Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani September 05, 2024

University of Illinois at Urbana-Champaign

Find the regular expression for the language containing all binary strings that **do not** contain the subsequence 111000

Find the regular expression for the language containing all binary strings that **do not** contain the substring 101010

Find the regular expression for the language containing all binary strings that **do not** contain the substring 101010

Find the regular expression for the language contains all binary strings whose $\#_0(w)\%$ 7 = 0(number of 0's divisible by 7).

Find the regular expression for the language contains all binary strings whose $\#_0(w)\%$ 7 = 0(number of 0's divisible by 7).

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 **or**
- does not contain the substring 101010 **or**
- or has a number of 0's divisible by 7

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 **or**
- does not contain the substring 101010 **or**
- or has a number of 0's divisible by 7

 $w = 1001110110111001$ 1000010111110010 0101010011001111 1001001011111100

You have 30 seconds.

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 **or**
- does not contain the substring 101010 **or**
- or has a number of 0's divisible by 7

 $w = 1001110110111001$ 1000010111110010 0101010011001111 1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get **lucky**.

Does luck allow us to solve unsolvable problems?

Does luck allow us to solve unsolvable problems? New example: Consider two machines: M_1 and M_2

- \blacksquare M_1 is a classic deterministic machine.
- \blacksquare M₂ is a "lucky" machine that will always make the right choice.

Problem: Find shortest path from a to b

Program on M_1 (Dijkstra's algorithm):

Initialize for each node v , $Dist(s, v) = d'(s, v) = \infty$ Initialize $X = \emptyset$, $d'(s, s) = 0$ **for** $i = 1$ to $|V|$ **do** Let v be node realizing $d'(s,v) = \min_{u \in V-X} d'(s,u)$ $Dist(s, v) = d'(s, v)$ $X = X \cup \{v\}$ Update $d'(s, u)$ for each u in $V - X$ as follows: $d'(s, u) = min(d'(s, u), Dist(s, v) + \ell(v, u))$

Problem: Find shortest path from a to b

Program on M_2 (Blind luck):

```
Initialize path = []path += aWhile(notatb)
    take an outgoing edge (u, v) from current node u to vcurrent = vpath += vreturn path
```
Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- \blacksquare M_1 is a classic deterministic machine.
- \blacksquare M₂ is a "lucky" machine that will always make the right choice.

Question:

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- \blacksquare M_1 is a classic deterministic machine.
- \blacksquare M₂ is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- \blacksquare M_1 is a classic deterministic machine.
- \blacksquare M₂ is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

The notion was first posed by **Robert W. Floyd** in 1967.

In computer science, a nondeterministic machine is a theoretical device that can have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Placeholder slide for youtube.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

[Non-deterministic finite automata](#page-21-0) [\(NFA\) Introduction](#page-21-0)

When you come to a fork in the road, take it.

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic **is not** deterministic.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N \text{ accepts } w\}.$

• Is 010110 accepted?

NFA acceptance: Wait! what about the ?!

$$
\begin{array}{c}\n0,1 \\
\bigcirc \\
\downarrow \\
\text{start}\n\end{array}\n\qquad\n\begin{array}{c}\n0,1 \\
\bigcirc \\
\downarrow \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n0,1 \\
\bigcirc \\
\downarrow \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n0,1 \\
\bigcirc \\
\downarrow \\
\hline\n\end{array}
$$

Is 010110 accepted?

Is 010110 accepted?

• Is 010110 accepted?

- Is 010110 accepted?
- **·** Is 010 accepted?

- Is 010110 accepted?
- **·** Is 010 accepted?
- Is 101 accepted?

- Is 010110 accepted?
- **·** Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?

- Is 010110 accepted?
- **·** Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

- Is 010110 accepted?
- **·** Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?
NFA acceptance: Example

- Is 010110 accepted?
- **•** Is 010 accepted?
- Is 101 accepted?
- **B** Is 10011 accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

[Formal definition of NFA](#page-37-0)

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

 \bullet Q is a finite set whose elements are called states,

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\overline{}$ $\overline{}$ $\overline{}$ is a finite set called the input alphabet,

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \bullet Q is a finite set whose elements are called states,
- \blacksquare Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \bullet Q is a finite set whose elements are called states,
- \blacksquare Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup {\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

 $\mathcal{P}(\mathcal{Q})$?

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example $Q = \{1, 2, 3, 4\}$

$$
\mathcal{P}(Q) = \left\{\n\begin{array}{c}\n\{1,2,3,4\}, \\
\{2,3,4\}, \{1,3,4\}, \{1,2,4\}, \{1,2,3\}, \\
\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \\
\{1\}, \{2\}, \{3\}, \{4\}, \\
\{\}\n\end{array}\n\right\}
$$

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \bullet Q is a finite set whose elements are called states,
- \blacksquare Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \bullet Q is a finite set whose elements are called states,
- $\overline{}$ $\overline{}$ $\overline{}$ is a finite set called the input alphabet.
- $\delta: Q \times \Sigma \cup {\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q).
- $s \in Q$ is the start state.

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- \bullet Q is a finite set whose elements are called states,
- \blacksquare Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q).
- $s \in Q$ is the start state.
- $A \subseteq Q$ is the set of accepting/final states.

 $δ(q, a)$ for $a ∈ Σ ∪ {ε}$ is a subset of Q — a set of states.

- \Box $Q =$
- \blacksquare $\Sigma =$
- \bullet $\delta =$

• NFA
$$
N = (Q, \Sigma, \delta, s, A)
$$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition state *q*^{*a***} is accepting, each** *a***², and** *a***¹** *a***²** *<i><i>x* $\frac{1}{2}$ *a*₂ *a*² *<i>a a*² *<i>a a*² *<i>a a*² *<i>a a*² *<i>a***²** *a***²** *a***²** *a***²** *a***²** *a***²** *a***²** *a***²** *a***²</sup>**

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach (q) is the set of all states that q can the *"⁻transitions"* (*"*₁, we won't not arrow is not arrow in the *"*₁, we won't not are that $\frac{1}{2}$ do reach asing only \circ transitions.

! *q*¹

! *q*²

! *··· ^a`*

! *q`* where the final

Definition state *q*^{*a***} is accepting, each** *a***², and** *a***¹** *a***²** *<i><i>x* $\frac{1}{2}$ *a*₂ *a*² *<i>a a*² *<i>a a*² *<i>a a*² *<i>a a*² *<i>a***²** *a***²** *a***²** *a***²** *a***²** *a***²** *a***²** *a***²** *a***²</sup>**

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ reach (q) is the set of all states that q can the *"⁻transitions"* (*"*₁, we won't not arrow is not arrow in the *"*₁, we won't not are that $\frac{1}{2}$ do reach asing only \circ transitions.

! *q*¹

! *q*²

! *··· ^a`*

! *q`* where the final

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach (x) . **Definition**

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if $w = \varepsilon$, $\delta^*(q, w) = \epsilon$ reach (q)

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$
w = \varepsilon
$$
, $\delta^*(q, w) = \varepsilon \text{reach}(q)$

• if
$$
w = a
$$
 where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \text{reach}\left(\bigcup_{p \in \epsilon \text{reach}(q)} \delta(p, a)\right)$

 ϵ reach(q): set of all states that q can reach using only ε -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

$$
• \text{ if } w = \varepsilon, \ \delta^*(q, w) = \epsilon \text{reach}(q)
$$

• if
$$
w = a
$$
 where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \text{reach}\left(\bigcup_{p \in \epsilon \text{reach}(q)} \delta(p, a)\right)$

 $\sqrt{ }$

 Δ

• if
$$
w = ax
$$
: $\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in \epsilon \text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

Find δ^* (q_0 , 11):

Find
$$
\delta^*(q_0, 11)
$$
:
\n
$$
\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in \text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)
$$

We know
$$
w = 11 = ax
$$
 so $a = 1$ and $x = 1$

$$
\delta^*(q_0, 11) = \epsilon \text{reach}\left(\bigcup_{p \in \text{reach}(q_0)} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1)\right)\right)
$$

$$
\epsilon \text{reach}(q_0) = \{q_0\}
$$
\n
$$
\delta^*(q_0, 11) = \epsilon \text{reach}\left(\bigcup_{p \in \{q_0\}} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1)\right)\right)
$$

Simplify:

$$
\delta^*(q_0,11)=\epsilon\text{reach}\left(\bigcup_{r\in\delta^*(\{q_0\},1)}\delta^*(r,1)\right)
$$

Need
$$
\delta^*(q_0, 1) = \epsilon \text{reach} \Big(\bigcup_{p \in \epsilon \text{reach}(q)} \delta(p, a) \Big) = \epsilon \text{reach}(\delta(q_0, 1))
$$
:
\n $= \epsilon \text{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\}$
\n $\delta^*(q_0, 11) = \epsilon \text{reach} \Big(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1) \Big)$

Need
$$
\delta^*(q_0, 1) = \epsilon \text{reach} \Big(\bigcup_{p \in \epsilon \text{reach}(q)} \delta(p, a) \Big) = \epsilon \text{reach}(\delta(q_0, 1))
$$
:
\n $= \epsilon \text{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\}$
\n $\delta^*(q_0, 11) = \epsilon \text{reach} \Big(\bigcup_{r \in \{q_0, q_1, q_2\}} \delta^*(r, 1) \Big)$

Simplify

 $\delta^*(q_0,11) = \epsilon$ reach $(\delta^*(q_0,1) \cup \delta^*(q_1,1) \cup \delta^*(q_2,1))$

$$
\delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in \epsilon \text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)
$$

•
$$
R = \epsilon \text{reach}(q) \implies \delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)
$$

• $N = \left[\begin{array}{c} \end{array} \right] \delta^*(p, a)$: All the states reachable from q with the letter a. p∈R

$$
\bullet \quad \delta^*(q, w) = \epsilon \text{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)
$$

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

What is:

 $\delta^*(\epsilon)$ $\mathcal{O}(9, c)$ $\delta^*(s, \epsilon) =$

What is:

- $\delta^*(\epsilon)$ • $\delta^*(\mathsf{s}, \epsilon) =$
	- $\delta^*(s,0) =$

What is:

- $\delta^*(s, \epsilon) =$ $\mathcal{O}(9, c)$
	- $\delta^*(s,0) =$
	- $s^*(b, 0) =$ $\delta^*(b,0) =$
Example

What is:

- $\delta^*(s, \epsilon) =$ $\mathcal{O}(9, c)$
	- $\delta^*(s,0) =$
	- $s^*(b, 0) =$ $\delta^*(b,0) =$
	- $\delta^*(b, 00) =$

[Constructing generalized NFAs](#page-73-0)

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

 $L = \{$ bitstrings that have a 1 three positions from the end $\}$

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N ⁰ has single final state f that has no outgoing transitions
- \blacksquare The start state s of N is different from f

For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N ⁰ has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the $L = 0^* + 1^*$.

[Closure Properties of NFAs](#page-79-0)

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

For any two NFAs N₁ and N₂ there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

For any two NFAs N₁ and N₂ there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Does not work! Why?

All these examples are examples of language *transformations*.

A language transformation is one where you take one class or languages, perform some operation and get a new language **that belongs to that same class (closure)**.

Tomorrow's lab will go over more examples of language transformations.

[Last thought](#page-90-0)

Equivalence

Do all NFAs have a corresponding DFA?

Equivalence

Do all NFAs have a corresponding DFA?

