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Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not
contain the subsequence 111000
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Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not
contain the subsequence 111000
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Pre-lecture brain teaser II

Find the regular expression for the language containing all binary strings that do not
contain the substring 101010

q0start q1 q2 q3 q4 q5 q6

1

0

1

0

1

0,1

1 0 1 0 1 0
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Pre-lecture brain teaser III

Find the regular expression for the language contains all binary strings whose
#0(w)%7 = 0(number of 0’s divisible by 7).

q0start q1 q2 q3 q4 q5 q6 q7

1 1 1 1 1 1 1 0,1

0 0 0 0 0 0 0
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Pre-lecture brain teaser III

Find the regular expression for the language contains all binary strings whose
#0(w)%7 = 0(number of 0’s divisible by 7).
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Pre-lecture brain teaser III

Show that the following string(w) is a member of the language that:

• does not contain the subsequence 111000 or
• does not contain the substring 101010 or
• or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get lucky.
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Tangential Thought

Does luck allow us to solve unsolvable problems?

New example: Consider two
machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right choice.
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Lucky machine programs

Problem: Find shortest path from a to b

Program on M1 (Dijkstra’s algorithm):
Initialize for each node v, Dist(s, v) = d ′(s, v) = ∞
Initialize X = ∅, d ′(s, s) = 0
for i = 1 to |V | do

Let v be node realizing d ′(s, v) = minu∈V−X d ′(s, u)
Dist(s, v) = d ′(s, v)
X = X ∪ {v}
Update d ′(s, u) for each u in V − X as follows:

d ′(s, u) = min
(

d ′(s, u), Dist(s, v) + `(v , u)
)
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Lucky machine programs

Problem: Find shortest path from a to b

Program on M2 (Blind luck):
Initialize path = []

path += a
While(notatb)

take an outgoing edge (u, v) from current node u to v
current = v
path += v

return path
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Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right choice.

Question:

Are there problems which M2 can solve that M1 cannot.

The notion was first posed by Robert W. Floyd in 1967.
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Non-determinism in computing

In computer science, a nondeterministic
machine is a theoretical device that can
have more than one output for the same
input.

A machine that is capable of taking
multiple states concurrently. Whenever it
reaches a choice, it takes both paths.

If there is a path for the string to be
accepted by the machine, then the string is
part of the language.
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Non-determinism in media

Placeholder slide for youtube.
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Why non-determinism?

• Non-determinism adds power to the model; richer programming language and
hence (much) easier to “design” programs

• Fundamental in theory to prove many theorems
• Very important in practice directly and indirectly
• Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used
to it and then you will appreciate it slowly.
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Non-deterministic finite automata
(NFA) Introduction



Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not deterministic.

q0start q1 q2 q3

0,1

1 0

ε

1

0,1
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NFA acceptance: Informal

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Informal definition: An NFA N accepts a string w iff some accepting state is reached
by N from the start state on input w .

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as:
L(N) = {w | N accepts w}.
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NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted?
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NFA acceptance: Wait! what about the ε?!

q0start q1 q2 q3

0,1

1 0

ε

1

0,1
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NFA acceptance: Example
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NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Is 010110 accepted?

• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to
show that a string is not accepted.
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Formal definition of NFA



Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q ×Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power set of

Q),

P(Q)?
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Reminder: Power set

Q: a set. Power set of Q is: P(Q) = 2Q = {X | X ⊆ Q} is set of all subsets of Q.

Example
Q = {1, 2, 3, 4}

P(Q) =



{1, 2, 3, 4} ,
{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,

{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,
{1} , {2} , {3} , {4} ,

{}
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Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,Σ, δ, s,A) is a five tuple where

• Q is a finite set whose elements are called states,
• Σ is a finite set called the input alphabet,
• δ : Q ×Σ ∪ {ε} → P(Q) is the transition function (here P(Q) is the power set of

Q),

• s ∈ Q is the start state,
• A ⊆ Q is the set of accepting/final states.

δ(q, a) for a ∈ Σ ∪ {ε} is a subset of Q — a set of states.
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Example

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q =

• Σ =

• δ =

• s =

• A =
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Extending the transition function to
strings



Extending the transition function to strings

• NFA N = (Q,Σ, δ, s,A)

• δ(q, a): set of states that N can go to from q on reading a ∈ Σ ∪ {ε}.
• Want transition function δ∗ : Q × Σ∗ → P(Q)

• δ∗(q,w): set of states reachable on input w starting in state q.
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Extending the transition function to strings

Definition
For NFA N = (Q,Σ, δ, s,A) and q ∈ Q the εreach(q) is the set of all states that q can
reach using only ε-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[ {"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ⊆ Q: εreach(X) =

⋃
x∈X εreach(x).
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Extending the transition function to strings

εreach(q): set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ∗ : Q × Σ∗ → P(Q):

• if w = ε, δ∗(q,w) = εreach(q)

• if w = a where a ∈ Σ: δ∗(q, a) = εreach

 ⋃
p∈εreach(q)

δ(p, a)



• if w = ax : δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Find δ∗ (q0, 11):

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

We know w = 11 = ax so a = 1 and x = 1

δ∗(q0, 11) = εreach

 ⋃
p∈εreach(q0)

 ⋃
r∈δ∗(p,1)

δ∗(r , 1)
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

εreach(q0) = {q0}

δ∗(q0, 11) = εreach

 ⋃
p∈{q0}

 ⋃
r∈δ∗(p,1)

δ∗(r , 1)
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Simplify:

δ∗(q0, 11) = εreach

 ⋃
r∈δ∗({q0},1)

δ∗(r , 1)
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Need δ∗(q0, 1) = εreach
(⋃

p∈εreach(q) δ(p, a)
)
= εreach(δ (q0, 1)):

= εreach({q0, q1}) = {q0, q1, q2}

δ∗(q0, 11) = εreach

 ⋃
r∈δ∗({q0},1)

δ∗(r , 1)
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Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Need δ∗(q0, 1) = εreach
(⋃

p∈εreach(q) δ(p, a)
)
= εreach(δ (q0, 1)):

= εreach({q0, q1}) = {q0, q1, q2}

δ∗(q0, 11) = εreach

 ⋃
r∈{q0,q1,q2}

δ∗(r , 1)


31



Example of extended transition function

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

Simplify

δ∗(q0, 11) = εreach(δ∗(q0, 1) ∪ δ∗(q1, 1) ∪ δ∗(q2, 1))
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Transition for strings: w = ax

δ∗(q,w) = εreach

 ⋃
p∈εreach(q)

 ⋃
r∈δ∗(p,a)

δ∗(r , x)



• R = εreach(q) =⇒ δ∗(q,w) = εreach

⋃
p∈R

⋃
r∈δ∗(p,a)

δ∗(r , x)


• N =

⋃
p∈R

δ∗(p, a): All the states reachable from q with the letter a.

• δ∗(q,w) = εreach
(⋃

r∈N
δ∗(r , x)

)
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Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if δ∗N(s,w) ∩ A 6= ∅.

Definition
The language L(N) accepted by a NFA N = (Q,Σ, δ, s,A) is

{w ∈ Σ∗ | δ∗(s,w) ∩ A 6= ∅}.

Important: Formal definition of the language of NFA above uses δ∗ and not δ. As
such, one does not need to include ε-transitions closure when specifying δ, since δ∗

takes care of that.
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Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w
if and only if there is a sequence of transitions s

a
1�! q

1

a
2�! q

2

a
3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a
1

a
2

· · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[ {"})! 2

Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• δ∗(s, ε) =

• δ∗(s, 0) =
• δ∗(b, 0) =
• δ∗(b, 00) =
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Constructing generalized NFAs



DFAs and NFAs

• Every DFA is a NFA so NFAs are at least as powerful as DFAs.
• NFAs prove ability to “guess and verify” which simplifies design and reduces

number of states
• Easy proofs of some closure properties
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Example

L = {bitstrings that have a 1 three positions from the end}
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A simple transformation

Theorem
For every NFA N there is another NFA N ′ such that L(N) = L(N ′) and such that N ′

has the following two properties:

• N ′ has single final state f that has no outgoing transitions
• The start state s of N is different from f

Why couldn’t we say this for DFA’s?
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A simple transformation

Hint: Consider the L = 0∗ + 1∗.
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Closure Properties of NFAs



Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

• union
• intersection
• concatenation
• Kleene star
• complement
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Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2
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Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1) ∪ L(N2).

q1 f1N1

q2 f2N2
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Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2
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Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))

∗.

q1 f1N1
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))

∗.

q1 f1N1

ε

Does not work! Why?
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q1 f1N1

ε

Does not work! Why?
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Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))

∗.

q1 f1N1q0
ε

ε
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Transformations

All these examples are examples of language transformations.

A language transformation is one where you take one class or languages, perform some
operation and get a new language that belongs to that same class (closure).

Tomorrow’s lab will go over more examples of language transformations.
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Last thought



Equivalence

Do all NFAs have a corresponding DFA?

q0start q1 q2 q3

0,1

1 0,1 0,1

Yes but it likely won’t be pretty.

q000start q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

10

1

0

1

0

1

0

1
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