

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not
contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani

September 05, 2024

University of lllinois at Urbana-Champaign

Pre-lecture brain teaser

JoUoeD

Find the regular expression for the language containing all binary strings that do not
contain the subsequence 111000

wd?sk@ ! | :
F(“"’ 20 g %6000

N A
h b o bbb

_ subeey 41EO0O)
wa"' cotal I x b1 0F)
- ' F10 <M € OF ITITLL o harer

g 10* PO

Pre-lecture brain teaser ||

Find the regular expression for the language containing all binary strings that do not
contain the substring 101010

Pre-lecture brain teaser ||

Find the regular expression for the language containing all binary strings that do not
contain the substring 101010

0,1
A \
stor Q‘QA@ 1{:‘4@\.\ Q,, (%)

=/

Pre-lecture brain teaser Il

Find the regular expression for the language contains all binary strings whose
#0o(w)%7 = 0(number of 0's divisible by 7).

Pre-lecture brain teaser Il

Find the regular expression for the language contains all binary strings whose
#0o(w)%7 = 0(number of 0's divisible by 7).

Pre-lecture brain teaser Il

Show that the following string(w) is a member of the language that:

= does not contain the subsequence 111000 or
= does not contain the substring 101010 or

= or has a number of 0’s divisible by 7

Pre-lecture brain teaser Il

Show that the following string(w) is a member of the language that:

= does not contain the subsequence 111000 or
= does not contain the substring 101010 or

= or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds.

Pre-lecture brain teaser Il

Show that the following string(w) is a member of the language that:

= does not contain the subsequence 111000 or
= does not contain the substring 101010 or

= or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get lucky.

Tangential Thought

Does luck allow us to solve unsolvable problems?

ab €
Floy X Wowswd e

Tangential Thought

Does luck allow us to solve unsolvable problems? New example: Consider two
machines: M; and M

= Mj is a classic deterministic machine.

= M, is a “lucky” machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b
D[wb?“)

Program on M; (Dijkstra’s algorithm):

Initialize for each node v, Dist(s,v) = d'(s,v) = o0
Initialize X =0, d'(s,s) =0
for i=1 to |V| do
Let v be node realizing d’'(s,v) = min,cv_xd'(s, u)
Dist(s, v) = d'(s, v)
X =XU{v}
Update d'(s,u) for each u in V — X as follows:
d'(s,u) = min(d’(s, u), Dist(s, v) + £(v, u))

Lucky machine programs

Problem: Find shortest path from a to b
Program on M, (Blind luck):

Initialize path = []

path += a

While (notatb)
take an outgoing edge (u,v) from current node u to v
current = v
path += v

return path

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M; and M,

= Mj is a classic deterministic machine.

= M, is a “lucky” machine that will always make the right choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M; and M,

= Mj is a classic deterministic machine.

= M, is a “lucky” machine that will always make the right choice.

Question: Are there problems which M, can solve that M; cannot.
—_—

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M; and M,

= Mj is a classic deterministic machine.

= M, is a “lucky” machine that will always make the right choice.

Question: Are there problems which M, can solve that M; cannot.

The notion was first posed by Robert W. Floyd in 1967.

Non-determinism in computing

In computer science, a nondeterministic
machine is a theoretical device that can

have more than one output for the same

i n p u t . _M Non-Deterministic
e 'Y
: : : i LN
A machine that is capable of taking : secemt= 4 £
" . ¢ L] L] L]
multiple states concurrently. Whenever it - o
L ~
reaches a choice, it takes both paths. i JL o — reject
X %
Lo e

If there is a path for the string to be
accepted by the machine, then the string is
part of the language.

10

Non-determinism in media

Placeholder slide for youtube.

11

Why non-determinism?

= Non-determinism adds power to the model; richer programming language and

hence (much) easier to “design” programs
= Fundamental in theory to prove many theorems
= Very important in practice directly and indirectly

= Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used

to it and then you will appreciate it slowly.

12

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

13

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not deterministic.
01 w=|ol Y

13

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached
by N from the start state on input w.

14

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached
by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(/N) and defined as:
L(N) = {w | N accepts w}.

14

NFA acceptance: Example

» |s 010110 accepted?

15

NFA acceptance: Wait! what about the 7!

16

NFA acceptance: Example

0,1 0,1

0 1
start@ 1 /CD aqz

3

s 010110 accepted?

17

NFA acceptance: Example

Symbol Read:

s 010110 accepted?

17

NFA acceptance: Example

= |s 010110 accepted? ch

18

NFA acceptance: Example

» |s 010110 accepted?
= Is 010 accepted? L)O

18

NFA acceptance: Example

» |s 010110 accepted?
= Is 010 accepted?
= |s 101 accepted? ‘éu

18

NFA acceptance: Example

Is 010110 accepted?

Is 010 accepted?

Is 101 accepted?

s 10011 accepted? Yeg

18

NFA acceptance: Example

» |s 010110 accepted?
= Is 010 accepted?

= |s 101 accepted?

» |s 10011 accepted?

= What is the language accepted by N7 AO.Q.:V*S a—u— o #
: \ I\ Jol
conFens fa 4»&4?'5 or

18

NFA acceptance: Example

» |s 010110 accepted?

= Is 010 accepted?

= |s 101 accepted?

= |s 10011 accepted?

» What is the language accepted by N?

18

NFA acceptance: Example

» |s 010110 accepted?

= Is 010 accepted?

= |s 101 accepted?

= |s 10011 accepted?

» What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to

show that a string is not accepted. 8

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

= @ is a finite set whose elements are called states,

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

= @ is a finite set whose elements are called states,

= X is a finite set called the input alphabet,

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

= @ is a finite set whose elements are called states,

= X is a finite set called the input alphabet,

‘Q x X U{e} ﬁ%?)' is the transition function (here P(Q) is the power set of
Lgmigviger= 3

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

= @ is a finite set whose elements are called states,

= X is a finite set called the input alphabet,
= 0:Q xXU{e} = P(Q) is the transition function (here P(Q) is the power set of

Q),

P(Q)?

19

Reminder: Power set
Q: a set. @ P(Q) =29 = {X | X C Q} is set of all subsets of Q.

Example

Q=1{1,2,3,4}

TG

{2,3,4},{1,3.4} ,{1,2,4}
P(Q) = {1,2},{1,3},{2,3}
{13, {2} . {3}, {4},

~~

/

20

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

= @ is a finite set whose elements are called states,

= X is a finite set called the input alphabet,
= 0:Q xXU{e} = P(Q) is the transition function (here P(Q) is the power set of

Q),

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where
= @ is a finite set whose elements are called states,
= X is a finite set called the input alphabet,
= 0:Q xXU{e} = P(Q) is the transition function (here P(Q) is the power set of
Q),
m s € @ is the start state,

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, d,s, A) is a five tuple where

= @ is a finite set whose elements are called states,

> is a finite set called the input alphabet,

§: Q xXU{e} — P(Q) is the transition function (here P(Q) is the power set of
Q),

s € Q is the start state,

A C Q is the set of accepting/final states.

0(q, a) for a € T U{e} is a subset of Q — a set of states.

21

2= fons

5 = £ ° '
% {03 5@3 {to /2!3
P |$q., 23 £42) ¢35
92 £o21\ £5 § 23
bhilig3 {43 223

A

{1

é 243

22

Extending the transition function to
strings

Extending the transition function to strings

« NFA N =(Q,%,6,s,A)

23

Extending the transition function to strings

= NFAN=(Q,%,d,s,A)
= §(q,a): set of states that N can go to from g on reading a € ¥ U {e}.

23

Extending the transition function to strings

- NFA N = (Q,%,4,s,A)
= §(q,a): set of states that N can go to from g on reading a € ¥ U {e}.
= Want transition function 0* : Q@ x * — P(Q)

23

Extending the transition function to strings

NFA N = (Q,%,6,s, A)
0(q, a): set of states that N can go to from g on reading a € ¥ U {¢}.
Want transition function * : @ x ¥* — P(Q)

0*(qg, w): set of states reachable on input w starting in state q.
)

(o)< 00

~

23

Extending the transition function to strings

Definition
For NFA N = (Q,%,4,s,A) and g € Q the ereach(q) is the set of all states that g can

reach using only e-transitions.

Oad Oy

a
1,0 e
£
131

24

Extending the transition function to strings

Definition
For NFA N = (Q,%,4,s,A) and g € Q the ereach(q) is the set of all states that g can

reach using only e-transitions. ‘o (D = 251 4, P
{_roolv <P) = i"'c"j 'A’o’ﬁ

vso

Definition

24

Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

= if w=¢, 6"(q, w) = ereach(q)

25

Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

= if w=¢, 6"(q, w) = ereach(q)

» ifw=awhereac¥: 0%(q,a) = ereach U d(p, a)
pEereach(q)

25

Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

= if w=¢, 6"(q, w) = ereach(q)

» ifw=awhereac¥: 0%(q,a) = ereach U d(p, a)
pEereach(q)

= if w= ax: 0" (g, w) = ereach U U 6% (r, x)

pEereach(q) \ red*(p,a)

25

Example of extended transition function

Find 0* (qo, 11):

26

Example of extended transition function

Find 0* (qo, 11):

6*(q, w) = ereach U U 6% (r, x)

pEereach(q) \ red*(p,a)

26

Example of extended transition function

We know w =11 = axsoa=1and x =1

0*(qgo, 11) = ereach U U 6 (r,1)

pEereach(qo) \ redé*(p,1)

27

Example of extended transition function

ereach(qo) = {qo}

5*(qo,11)—ereach(U (U (5*(r,1)))
pE{qo} \redé*(p.1)

28

Example of extended transition function

Simplify:

0"(qgo, 11) = ereach U 6 (r,1)
red*({qo},1)

29

Example of extended transition function

Need 0*(qo, 1) = ereach (Up&reach(q) d(p, a)) = ereach(d (qo, 1)):

= ereach({q0,91}) = {q0, 91, 92}

d*(qo, 11) = ereach (U §*(r, 1))

red*({qo},1)

30

Example of extended transition function

Need 0*(qo, 1) = ereach (Up&reach(q) d(p, a)) = ereach(d (qo, 1)):

= ereach({q0,91}) = {q0, 91, 92}

d*(qo, 11) = ereach U 6*(r,1)
re{qo,q1,92}

31

Example of extended transition function

Simplify
0*(qo,11) = ereach(0"(qo, 1) U™ (q1,1) Ud*(g2,1)) -

32

Transition for strings: w = ax

6%(q, w) = ereach U U 6" (r, x)

pEereach(q) \ red*(p,a)

» R =c¢reach(q) = ¢"(q, w) = ereach U U 6" (r, x)
PER redé*(p,a)

= N = U 0% (p, a): All the states reachable from g with the letter a.
pER

= 0'(q,w) = ereach(U (5*(r,x)>

reN

33

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if 65(s, w) N A # 0.

Definition
The language L(N) accepted by a NFA N = (Q, %, d,s,A) is

(wex* |6 (s,w)NA#D}.

34

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if 65(s, w) N A # 0.

Definition
The language L(N) accepted by a NFA N = (Q, %, d,s,A) is

(wex* |6 (s,w)NA#D}.

Important: Formal definition of the language of NFA above uses 6* and not 4. As
such, one does not need to include e-transitions closure when specifying 9, since 0*

takes care of that.

34

What is:

= §%(s,€) =

35

What is:

= §%(s,€) =
= 0%(s,0) =

35

What is:

= §%(s,€) =
= 0%(s,0) =
= 0%(b,0) =

35

What is:

= §%(s,€) =
= 0%(s,0) =
= 0%(b,0) =
= 0%(b,00) =

35

Constructing generalized NFAs

DFAs and NFAs

= Every DFA is a NFA so NFAs are at least as powerful as DFAs.

= NFAs prove ability to “guess and verify” which simplifies design and reduces
number of states

» Easy proofs of some closure properties

36

L = {bitstrings that have a 1 three positions from the end}

{

&OVO_;O NG SLENGD

37

A simple transformation

Theorem
For every NFA N there is another NFA N’ such that L(N) = L(N') and such that N’

has the following two properties:

= N’ has single final state f that has no outgoing transitions

m [he start state s of N is different from f

38

A simple transformation

Theorem
For every NFA N there is another NFA N’ such that L(N) = L(N') and such that N’

has the following two properties:

= N’ has single final state f that has no outgoing transitions

m [he start state s of N is different from f

Why couldn’t we say this for DFA’s?

38

A simple transformation

Hint: Consider the L = 0* + 1*.

39

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

S

= union

= |ntersection

= concatenation
= Kleene star

= complement

40

Closure under union

Theorem
For any two NFAs Ny and Ny there is a NFA N such that L@: L(N;) U L(Nb).

B I

41

Closure under union

Theorem
For any two NFAs N; and N, there is a NFA N such that L(N) = L(Ny) U L(N,).

e Ny }

. @ N }

41

Closure under concatenation

Theorem
For any two NFAs Ni and N, there is a NFA N such that L(N) = L(Ny)+L(N>).

42

Closure under concatenation

Theorem
For any two NFAs Ny and N, there is a NFA N such that L(N) = L(Ny)+L(N>).

O—HD m OFH@ v H—@

42

Closure under Kleene star

Theorem
For any NFA Nj there is a NFA N such that L(N) = (L(Nyp))*.

N1

\

43

Closure under Kleene star

Theorem
For any NFA Ny there is a NFA N such that L(N) = (L(N1))*.

44

Closure under Kleene star

Theorem
For any NFA Ny there is a NFA N such that L(N) = (L(Ny1))*.

Does not work! Why?

44

Closure under Kleene star

Theorem
For any NFA Nj there is a NFA N such that L(N) = (L(Nyp))*.

B{o » @

€

45

Transformations

All these examples are examples of language transformations.

A language transformation is one where you take one class or languages, perform some
operation and get a new language that belongs to that same class (closure).

Tomorrow's lab will go over more examples of language transformations.

46

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

47

Equivalence

Do all NFAs have a corresponding DFA?

start

Yes but it likely won't be pretty. 4

