Equivalence of DFAs, NFAs &
Regular Expressions

Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Goal of lecture

REGULAR
EXPRESSIONS

* The point of this lecture is to
establish that we gain no
additional computational chops
by choosing one of DFA/NFA/
RegEXx (Regular Expressions)
over the other. Subset Construction

* They all represent the same class
of language - reqular languages.

Source: Kani Archive

A language L can be described by a regular

expression if and only if L is the language
accepted by a DFA.

Kleene’s Theorem ~ 1951

Outline of lecture

REGULAR
EXPRESSIONS

 Each of the arrows in the figure
on the right could be formally
proved ... but

 We will only look at the Subset
Construction formally.

Subset Construction

* For the remaining, we will K.
“prove by example.”

Source: Kani Archive

Equivalence of DFAs and NFAs

Formal definitions

Deterministic Finite Automaton

Recall that the formal definition of a DFA is as follows. A DFA is a 5-tuple
M= (0,%,8,qyF)

where

» () is afinite set of states,

« 2. is a finite set of tokens/characters called the alphabet,

e 0.0 X2 — (Qis atransition function that encodes state changes when a token from
the alphabet is consumed,

* gp € Q is asingle distinguished state called the start state,

« [C (is a set of distinguished states called the accept or final states.

6

Formal definitions

Nondeterministic Finite Automaton

Recall that the formal definition of an NFA is as follows. A NFA is a 5-tuple

N = (Q, 2., 0, g F)
where

» () is afinite set of states,
« 2. is a finite set of tokens/characters called the alphabet,

e 0. 0X2Ue — ¢ is a transition rule that encodes state changes when a token from
the alphabet is consumed,

* gp € Q is asingle distinguished state called the start state,

« [C (is a set of distinguished states called the accept or final states.

14

Equivalence of NFAs and DFAs

Key difference

* NFAs we have introduced allow e Therefore, an NFA without any é-
spontaneous transitions (called & transitions and such that
-transitions)

. . [6(q,0)| <1

 NFAs could be In multiple states
simultaneously 5(g,0) # O

* NFAs need not spell out every forallg € 0,0 € ¥ is a DFA

transition
 |n other words, all DFAs are NFAs

Equivalence of NFAs and DFAs

REGULAR
EXPRESSIONS

 Thus, we only need to show that
for every NFA N, there exists an
equivalent DFA M

 What does it mean for two finite
automata to be equivalent?

Subset Construction

e Given NV, need to show can
construct M such that

L(M) = L(N) Source: Kani Archive

Equivalence of NFAs and DFAs

Extended transition functions

» For a DFA M we can say M accepts a string w if 3(%, w) € I where
Oy - O X 2* — (Jis the extended transition function defined recursively

: SM(q,w) =qifw € ¢
. SM(q, W) = SM (5(q, a),x) if w = ax forsomea € 2 andx € 2*
e \What should the extended transition rule for an NFA be”?

 Need to be able to handle those spontaneous &-transitions

10

Equivalence of NFAs and DFAs

Extended transition functions

» Define E(qg) to be the e-reach of g € (. That is, let £(g) be the set of states
reachable from ¢ by following zero or more ¢ arrows.

 \We will also allow E to act on a set R:

E(R) := U E(r)

reR

» Then, the extended transition rule SN for an NFA can be defined recursively:
SN (q,w) =E(g) ifw=¢

On (q,w) = U E(o(p,a)) ifw =xawherea € X
p€iy(g, x)

11

Equivalence of NFAs and DFAs

Subset construction method

» Now we can say a DFA M and NFA [V are equivalent if their extended
transitions 0,, and 0,, agree on all words w.

. Given, N = (Q, 2., 0, 4o F) let us try to construct a M = (Q’, 2,0, qp; F’)
such that L(M) = L(N).

» Since they must recognize the same language, 2" = 2..

 Next, an NFA can be in multiple states at once. At each instance, these
various states will always be a subset of 0. Thus, we can set O’ = 2.

12

Equivalence of NFAs and DFAs

Subset construction method

« Next, we must define the transition rule for M incorporating those &
-transitions of /V.

 From any state R in M (which, remember, is a set of states), if we consume a
token a, we need to follow any edges labeled a, and then we need to take
any e-transitions from there. Thus we get:

O'(R,a) := U E (5(q, a))

gER

13

Equivalence of NFAs and DFAs

Subset construction method

- Finally, it remains to specify the start and accept states ¢, and /"’ respectively.
 From the start state, we immediately follow all e-transitions. So set
qy = E (%)

 The final states of M should be the collection of states of /V that are final
states.

FF={REQ | RNF+# @)}

14

Equivalence of NFAs and DFAs

Subset construction method

« That completes the specification of a DFA M mimicking the functioning of an
NFA N.

* |s the proof complete?

« One way to finish the proof is to show SN(qO, W) = SM(q(’), w) for all
A=P

e |t can be done using induction on |w| and fair bit of definition chasing.

15

Example - subset construction

We write software to automate tasks ...
.... loops, subroutines and functions to avoid repetition and tedium ...

... SO why reinvent the wheel?

Standford's CS 103 Notes: Guide to the Subset Construction

https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/notes/Guide%20to%20the%20Subset%20Construction.pdf

Equivalence of DFAs and Regular
EXpressions

Converting a DFA to Regular Expression
Algebraic method

REGULAR
EXPRESSIONS

e Next, let us look at how one
might construct a regular
expression out of a DFA:

* Highlighted red arrow In
diagram
Subset Construction

» Called algebraic because we end
up solving a system of equations

Source: Kani Archive

18

Converting a DFA to Regular Expression

Algebraic method - Example

0

Key point: We can write a
transition to a state as a
juxtaposition of the prior state with
the consumed token.

Example: The transition to ¢, can
be written as 0

g1 = ¢y 0

19

0,1

Converting a DFA to Regular Expression

Algebraic method - Example

0

e gp =€+ q1+g,0

Now we simple solve the system of

equations for g, (accept state) e o

20

0,1

Converting a DFA to Regular Expression

Algebraic method - Example

* go = €+ q;1+g0 P et aital

¢ (| = qo()
e gy =€+ qy(01 + 10)
* gy = qpl ’)
¢ 3 = %O"‘Q’zl"‘%(o + 1) Apply Arden’s Lemma

R =0+ RP = QP*

21

Arden’s lemma
Proof sketch

» Showthat R = 0 + RP = QP*
 Start with R = O + RP and repeatedly plug-in the definition recursively
« Once: R = Q+(Q + RP) P

. Twice: R = Q+(Q+(Q + RP) P) P

¢« .R=0(e+P+P+P°+...)

22

Converting a DFA to Regular Expression

Algebraic method - Example

* go = €+ q;1+g0 P et aital

¢ (| = qo()
e gy =€+ qy(01 + 10)
* gy = qpl ’)
¢ 3 = %O"‘Q’zl"‘%(o + 1) Apply Arden’s Lemma

go = €+ q, (01 + 10)
g, = €(01 + 10)* = (01 + 10)°

R =0 + RP = OP*

23

Equivalence of NFAs and Regular
Expressions - State removal

Converting a DFA to Regular Expression

State removal

REGULAR
EXPRESSIONS

Key observation

f g, = 0(qy, x) and g, = 0(q;, y)

then
qz — 5(q1’y) p— 5(5(q0’ x),y) Subset Construction
= 0(q0> XY) .

Source: Kani Archive

25

Converting a DFA to Regular Expression

State removal - example

qo = 0(q,,1) g1 = 0(q,0)
go = 0(0(qp,0),1)

do = 0(qp,01)

¢, = 0(q,,0) q1 = 0(q5,1)

g, = 6(6(g,1),0)
g, = 6(q,,10)

26

Converting a DFA to Regular Expression

State removal - example

Converting a DFA to Regular Expression

State removal

Ol + (1 +00)(10)*

start
—_—

Converting a DFA to Regular Expression

State removal

Ol + (1 +00)(10)*

O Final expression:
iarl (01 + (1 + 00)(10)*(0 + 11))*

Converting a NFA to Regular Expression

State removal
Ry Ry,

* Key idea: We allow for a . R
generalized NFA permitting =
arbitrary regular expression on o
the transition arrows. R,

e Here R, Ry,, R,; and R,, are
valid regular expressions

 Can we get a clean regular
expression from this NFA?

30

Converting a NFA to Regular Expression

State removal

o Step 1: Normalize

» Add a new start state g, and
accept state gto the NFA.

» Add an é&-transition from g, to
the old start state of V.

 Add e-transitions from each
accepting state of /V to g,then
mark them as not accepting.

Rll

Converting a NFA to Regular Expression

State removal
Ry Ry,

 Step 2: Remove states

HOEN
E
 Repeatedly remove states ° ° e
R12

other than g, and g, from the
NFA by “shortcutting” them
until only two states remain: g,

and g

» The transition from g, to g 1s ° Regular expression o
then a regular expression for

the NFA.

Converting a NFA to Regular Expression

State removal

 Step 2: Details

» For each pair (¢, g,) such that

Rin Raut
9 —>4, 4 — 4

Add a transition such that
4r = 0 (QPRin ' R:I; ' Rout)

where Rq is a self-transition (if any)

Ry Ry,
e l Ry, .u
° o |
Ry,
%
ERF Ry

Converting a NFA to Regular Expression

State removal

 Step 2: Details

» For each pair (¢, g,) such that

Rin Raut
9 —>4, 4 — 4

Add a transition such that
4r = 0 (QPRin ' R:I; ' Rout)

where Rq is a self-transition (if any)

Rll

° | o

Converting a NFA to Regular Expression

State removal

 Step 2: Details

» For each pair (¢, g,) such that

Rin Raut
9 —>4, 4 — 4

Add a transition such that
g, =0 (QlaRm ‘ Rff ‘ Rout)

where Rq is a self-transition (if any)

R22
o |
eRT R, U
Ry R Ry

Converting a NFA to Regular Expression

State removal

e Step 2: Details

R22
» For each pair (¢, g,) such that ° ©
R 4
o R KR O

g, =4, 49— q,

Add a transition such that

Ryl R\ RE:R

4r = 0 (QPRin ' R:I; ' Rout)

where Rq is a self-transition (if any)
oK

» Use union operation to handle multiple RﬁRlz(Rzz + RlefklRlz) €
transitions

Equivalence of NFAs and Regular
Expressions - [hompson’s
algorithm

NFA from a RegEX

Thompson’s algorithm

 Key idea: Represent regular
operations (Union,
Concatenation & Kleene Star)
using NFAs.

e Given: Two NFAs 5 and [
representing languages L and

Ly

« What NFA represents L¢ - L,
Lg+ Lyand L

38

NFA from a RegEX

Regular operation rules

e Concatenation
e L. = LS - Lt

e “Series connection”

39

NFA from a RegEX

Regular operation rules

 Union

e “Parallel connection”

40

NFA from a RegEX

Regular operation rules

e Kleene star
e [, = L;k

* Need to allow the empty
string

 Need to allow multiple
copies of any w € L¢

41

NFA from a RegEX

Example

 Find an NFA for (O + 1)*(101 + 010)(0 + 1)*

e Rewrite:

(04 1)*- (101 +010) - (0+ D)* = (0 + 1)* - (101 + 010) - (0 + 1)*

TN N

N, N, N, (N, + N))* N¢ Np (N, + N))*

) (o) (o
Mo+ N (@))
3 1 5

42

NFA from a RegEX

Example

(04 1)* - (101 +010) - (0 + 1)* = (0 + 1)* - (101 + 010) - (0 + 1)*

TN N

Ny Np Ny (N + ND* Ne Np (Ng+N*

NFA from a RegEx

Example

(04 1)* - (101 +010) - (0 + 1)* = (0 + 1)* - (101 + 010) - (0 + 1)*

—~

: ; " (No +N)” Ne Np (Ng+N)*

(N-+ Np)
0

mOaS

(a)—(a
0 I .
q1 0 . /

E

)

Regular Expression to DFA -
Brzozowski’s algorithm

Skipped - see Kani Archive for more information

Figure from Kani Archive

REGULAR
EXPRESSIONS

Subset Construction

Next class: Languages that are not regular

