
All mistakes are my own! - Ivan Abraham (Fall 2024)

Equivalence of DFAs, NFAs &
Regular Expressions
Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.

• The point of this lecture is to
establish that we gain no
additional computational chops
by choosing one of DFA/NFA/
RegEx (Regular Expressions)
over the other.

• They all represent the same class
of language - regular languages.

Goal of lecture

2

Source: Kani Archive

REGULAR
EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg
Stat

e r
em

ov
al →

 NFA →
DFA

Algebraic Method

Kleene’s Theorem ~ 1951

A language can be described by a regular
expression if and only if is the language
accepted by a DFA.

L
L

3

• Each of the arrows in the figure
on the right could be formally
proved … but

• We will only look at the Subset
Construction formally.

• For the remaining, we will
“prove by example.”

Outline of lecture

4

Source: Kani Archive

REGULAR
EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg
Stat

e r
em

ov
al →

 NFA →
DFA

Algebraic Method

Equivalence of DFAs and NFAs

5

Formal definitions
Deterministic Finite Automaton

Recall that the formal definition of a DFA is as follows. A DFA is a 5-tuple

where

• is a finite set of states,

• is a finite set of tokens/characters called the alphabet,

• is a transition function that encodes state changes when a token from
the alphabet is consumed,

• is a single distinguished state called the start state,

• is a set of distinguished states called the accept or final states.

M = (Q, Σ, δ, q0, F)

Q
Σ
δ : Q × Σ → Q

q0 ∈ Q
F ⊆ Q

6

Formal definitions
Nondeterministic Finite Automaton

Recall that the formal definition of an NFA is as follows. A NFA is a 5-tuple

where

• is a finite set of states,

• is a finite set of tokens/characters called the alphabet,

• is a transition rule that encodes state changes when a token from
the alphabet is consumed,

• is a single distinguished state called the start state,

• is a set of distinguished states called the accept or final states.

N = (Q, Σ, δ, q0, F)

Q
Σ
δ : Q × Σ ∪ ε → 2Q

q0 ∈ Q
F ⊆ Q

7

Equivalence of NFAs and DFAs
Key difference

• NFAs we have introduced allow
spontaneous transitions (called
-transitions)

• NFAs could be in multiple states
simultaneously

• NFAs need not spell out every
transition

ε

8

• Therefore, an NFA without any -
transitions and such that

for all is a DFA

• In other words, all DFAs are NFAs

ε

|δ(q, σ) | ≤ 1

δ(q, σ) ≠ Ø

q ∈ Q, σ ∈ Σ

• Thus, we only need to show that
for every NFA , there exists an
equivalent DFA

• What does it mean for two finite
automata to be equivalent?

• Given , need to show can
construct such that

N
M

N
M

L(M) = L(N)

9

Source: Kani Archive

Equivalence of NFAs and DFAs
REGULAR

EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg
Stat

e r
em

ov
al →

 NFA →
DFA

Algebraic Method

Extended transition functions

• For a DFA we can say accepts a string if where
 is the extended transition function defined recursively

• if

• if for some and

• What should the extended transition rule for an NFA be?

• Need to be able to handle those spontaneous -transitions

M M w ̂δ(q0, w) ∈ F
̂δM : Q × Σ* → Q

̂δM(q, w) = q w ∈ ε

̂δM(q, w) = ̂δM (δ(q, a), x) w = ax a ∈ Σ x ∈ Σ*

ε

10

Equivalence of NFAs and DFAs

Extended transition functions

• Define to be the -reach of . That is, let be the set of states
reachable from by following zero or more arrows.

• We will also allow to act on a set :

• Then, the extended transition rule for an NFA can be defined recursively:

 if where

E(q) ε q ∈ Q E(q)
q ε

E R

E(R) := ⋃
r∈R

E(r)

̂δN

̂δN (q, w) = E(q) if w = ε

̂δN (q, w) = ⋃
p∈ ̂δN(q, x)

E(δ(p, a)) w = xa a ∈ Σ

11

Equivalence of NFAs and DFAs

Subset construction method

• Now we can say a DFA and NFA are equivalent if their extended
transitions and agree on all words .

• Given, let us try to construct a
such that .

• Since they must recognize the same language, .

• Next, an NFA can be in multiple states at once. At each instance, these
various states will always be a subset of . Thus, we can set .

M N
̂δM

̂δN w

N = (Q, Σ, δ, q0, F) M = (Q′￼, Σ′￼, δ′￼, q′￼0, F′￼)
L(M) = L(N)

Σ′￼ = Σ

Q Q′￼ = 2Q

12

Equivalence of NFAs and DFAs

Subset construction method

• Next, we must define the transition rule for incorporating those
-transitions of .

• From any state in (which, remember, is a set of states), if we consume a
token , we need to follow any edges labeled , and then we need to take
any -transitions from there. Thus we get:

M ε
N

R M
a a

ε

δ′￼(R, a) := ⋃
q∈R

E (δ(q, a))

13

Equivalence of NFAs and DFAs

Subset construction method

• Finally, it remains to specify the start and accept states and respectively.

• From the start state, we immediately follow all -transitions. So set

• The final states of should be the collection of states of that are final
states.

q′￼0 F′￼

ε

q′￼0 = E (q0)
M N

F′￼ = {R ∈ Q′￼ ∣ R ∩ F ≠ ∅}

14

Equivalence of NFAs and DFAs

Subset construction method

• That completes the specification of a DFA mimicking the functioning of an
NFA .

• Is the proof complete?

• One way to finish the proof is to show for all

• It can be done using induction on and fair bit of definition chasing.

M
N

̂δN(q0, w) = ̂δM(q′￼0, w)
w ∈ Σ*

|w |

15

Equivalence of NFAs and DFAs

Standford's CS 103 Notes: Guide to the Subset Construction

Example - subset construction

16

We write software to automate tasks …

…. loops, subroutines and functions to avoid repetition and tedium …

… so why reinvent the wheel?

https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/notes/Guide%20to%20the%20Subset%20Construction.pdf

Equivalence of DFAs and Regular
Expressions

17

Algebraic method

• Next, let us look at how one
might construct a regular
expression out of a DFA:

• Highlighted red arrow in
diagram

• Called algebraic because we end
up solving a system of equations

18

Source: Kani Archive

Converting a DFA to Regular Expression
REGULAR

EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg
Stat

e r
em

ov
al →

 NFA →
DFA

Algebraic Method

Algebraic method - Example

19

Converting a DFA to Regular Expression

q0 q1

q2 q3

0

1

0 0

1

1

0,1

Key point: We can write a
transition to a state as a
juxtaposition of the prior state with
the consumed token.

Example: The transition to can
be written as

q1

q1 = q0 ⋅ 0

Algebraic method - Example

20

Converting a DFA to Regular Expression

q0 q1

q2 q3

0

1

0 0

1

1

0,1

•

•

•

•

Now we simple solve the system of
equations for (accept state)

q0 = ϵ + q11+q20

q1 = q00

q2 = q01

q3 = q10+q21+q3(0 + 1)

q0

Algebraic method - Example

21

Converting a DFA to Regular Expression

•

•

•

Apply Arden’s Lemma

q0 = ϵ + q11+q20

q0 = ϵ + q001+q010

q0 = ϵ + q0 (01 + 10)

•

•

•

•

q0 = ϵ + q11+q20

q1 = q00

q2 = q01

q3 = q10+q21+q3(0 + 1)

R = Q + RP = QP*

Arden’s lemma
Proof sketch

• Show that

• Start with and repeatedly plug-in the definition recursively

• Once:

• Twice:

• …

R = Q + RP = QP*

R = Q + RP

R = Q+(Q + RP) P

R = Q+(Q+(Q + RP) P) P

R = Q (ε + P + P2 + P3 + …)

22

Algebraic method - Example

23

Converting a DFA to Regular Expression

•

•

•

Apply Arden’s Lemma

q0 = ϵ + q11+q20

q0 = ϵ + q001+q010

q0 = ϵ + q0 (01 + 10)

q0 = ϵ + q0 (01 + 10)

q0 = ϵ(01 + 10)* = (01 + 10)*

•

•

•

•

q0 = ϵ + q11+q20

q1 = q00

q2 = q01

q3 = q10+q21+q3(0 + 1)

R = Q + RP = QP*

Equivalence of NFAs and Regular
Expressions - State removal

24

State removal

Key observation

If and

then

q1 = δ(q0, x) q2 = δ(q1, y)

q2 = δ(q1, y) = δ(δ(q0, x), y)
= δ(q0, xy)

25

Source: Kani Archive

Converting a DFA to Regular Expression
REGULAR

EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg
Stat

e r
em

ov
al →

 NFA →
DFA

Algebraic Method

State removal - example

26

Converting a DFA to Regular Expression

q0 q2

q1

start

0 0

0

1 1

1

q0 = δ(q1,1) q1 = δ(q0,0)

q0 = δ(δ(q0,0),1)
q0 = δ(q0,01)

q2 = δ(q1,0)

q2 = δ(δ(q2,1),0)

q1 = δ(q2,1)

q2 = δ(q1,10)

State removal - example

27

Converting a DFA to Regular Expression

q0 q2

q1

start

0 0

0

1 1

1 q0 q2
start

01 10

1+00

0+11

State removal

28

Converting a DFA to Regular Expression

01 + (1 + 00)(10)*(0 + 11)

q0
start q0 q2

start

01 10

1+00

0+11

State removal

29

Converting a DFA to Regular Expression

01 + (1 + 00)(10)*(0 + 11)

q0
start (01 + (1 + 00)(10)*(0 + 11))*

Final expression:

• Key idea: We allow for a
generalized NFA permitting
arbitrary regular expression on
the transition arrows.

• Here and are
valid regular expressions

• Can we get a clean regular
expression from this NFA?

R11, R12, R21 R22

30

Converting a NFA to Regular Expression
State removal

q1 q2

R21

R12

R11
R22

qf

State removal
Converting a NFA to Regular Expression

• Step 1: Normalize

• Add a new start state and
accept state to the NFA.

• Add an -transition from to
the old start state of .

• Add -transitions from each
accepting state of to then
mark them as not accepting.

qs
qf

ε qs
N

ε
N qf

q1

R21

R12

R11
R22

qs
q2

ε ε

State removal
Converting a NFA to Regular Expression

• Step 2: Remove states

• Repeatedly remove states
other than and from the
NFA by “shortcutting” them
until only two states remain:
and .

• The transition from to is
then a regular expression for
the NFA.

qs qf

qs
qf

qs qf qs qf
Regular expression

q1

R21

R12

R11
R22

qs
qfq2

ε ε

State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair such that

Add a transition such that

where is a self-transition (if any)

• Use union operation to handle multiple
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

q1

R21

R12

R11
R22

qs
qfq2

ε ε

εR*11R12

qf

State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair such that

Add a transition such that

where is a self-transition (if any)

• Use union operation to handle multiple
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

q1

R21

R12

R11
R22

qs
q2

ε ε

R21R*11R12

State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair such that

Add a transition such that

where is a self-transition (if any)

• Use union operation to handle multiple
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

R22

qs
qfq2

ε

R21R*11R12

εR*11R12

State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair such that

Add a transition such that

where is a self-transition (if any)

• Use union operation to handle multiple
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq qs qf

R*11R12(R22 + R21R*11R12)
*
ε

qs
qfq2

ε

R22 + R21R*11R12

R*11R12

R22

R21R*11R12

Equivalence of NFAs and Regular
Expressions - Thompson’s
algorithm

37

Thompson’s algorithm

• Key idea: Represent regular
operations (Union,
Concatenation & Kleene Star)
using NFAs.

• Given: Two NFAs and
representing languages and

• What NFA represents ,
 and

S T
LS

LT

LS ⋅ LT
LS + LT L*S

NFA from a RegEx

38

qi qf…

S

qi qf…

T

qi qf…

T

Regular operation rules

• Concatenation

•

• “Series connection”

L = Ls ⋅ Lt

NFA from a RegEx

39

qi qf…

S
q0 qF

ε

ε
ε

qi qf…

T

• Union

•

• “Parallel connection”

L = LS + LT

NFA from a RegEx

40

qi qf…

S
q0 qF

ε

ε

ε

ε

Regular operation rules

• Kleene star

•

• Need to allow the empty
string

• Need to allow multiple
copies of any

L = L*s

w ∈ LS

NFA from a RegEx

41

qi qf…

S
q0 qF

ε ε

Regular operation rules

ε

ε

• Find an NFA for

• Rewrite:

(0 + 1)*(101 + 010)(0 + 1)*

NFA from a RegEx

42

Example

(0 + 1)*

NA

⋅ (101 + 010)

NB

⋅ (0 + 1)*

NA

= (0 + 1)*

(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*

(N0 + N1)*

N0 qi qf

N1 qi qf

0

1
N0 + N1

qi qf

qi qf

0

1

q0 qF

ε

ε

ε

ε

NFA from a RegEx

43

Example

(0 + 1)*

NA

⋅ (101 + 010)

NB

⋅ (0 + 1)*

NA

= (0 + 1)*

(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*

(N0+N1)*

N0 + N1

qi qf

qi qf

0

1

q0 qF

ε

ε

ε

ε

(N0 + N1)*

0

εq′￼0 q′￼F

qi qf

qi qf1

q0 qF

ε

ε

ε

ε

ε ε

ε

NFA from a RegEx
Example

(0 + 1)*

NA

⋅ (101 + 010)

NB

⋅ (0 + 1)*

NA

= (0 + 1)*

(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*

(N0+N1)*

(NC + ND)

q0 q1 q2 qf
1 10

q0 q1 q2 qf
0 01

q0 qF

ε

ε

ε

ε

Regular Expression to DFA -
Brzozowski’s algorithm

45

Skipped - see Kani Archive for more information

Summary

Figure from Kani Archive

Next class: Languages that are not regular

REGULAR
EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg
Stat

e r
em

ov
al →

 NFA →
DFA

Algebraic Method

