

- The point of this lecture is to establish that we gain no additional computational chops by choosing one of DFA/NFA/ RegEx (Regular Expressions) over the other.
- They all represent the same class of language - *regular languages.*

Goal of lecture

Source: Kani Archive

Kleene's Theorem ~ 1951

A language L can be described by a regular expression if and only if L is the language accepted by a DFA.

- Each of the arrows in the figure on the right could be *formally* proved … but
	- We will only look at the *Subset Construction* formally.
	- For the remaining, we will "prove by example."

Outline of lecture

Source: Kani Archive

Equivalence of DFAs and NFAs

Formal definitions Deterministic Finite Automaton

Recall that the formal definition of a DFA is as follows. A DFA is a 5-tuple

where

- Q is a finite set of *states,*
- Σ is a finite set of tokens/characters called the *alphabet*,
- $\delta: Q \times \Sigma \rightarrow Q$ is a *transition function* that encodes state changes when a token from the alphabet is consumed,
- $q_0 \in Q$ is a single distinguished state called the *start state,*
- $F \subseteq Q$ is a set of distinguished states called the *accept* or *final states*.

 $M = (Q, \Sigma, \delta, q_0, F)$

Formal definitions Nondeterministic Finite Automaton

Recall that the formal definition of an NFA is as follows. A NFA is a 5-tuple

where

- Q is a finite set of *states,*
- Σ is a finite set of tokens/characters called the *alphabet*,
- $\delta:Q\times\Sigma\cup\varepsilon\to 2^Q$ is a transition rule that encodes state changes when a token from the alphabet is consumed,
- $q_0 \in Q$ is a single distinguished state called the *start state,*
- $F \subseteq Q$ is a set of distinguished states called the *accept* or *final states*.

 $N = (Q, \Sigma, \delta, q_0, F)$

Equivalence of NFAs and DFAs Key difference

- NFAs we have introduced allow spontaneous transitions (called *ε* -transitions)
- NFAs could be in multiple states simultaneously
- NFAs need not spell out every transition

• Therefore, an NFA without any $ε$ transitions and such that

$$
|\delta(q, \sigma)| \le 1
$$

$$
\delta(q, \sigma) \ne \emptyset
$$

for all $q \in Q, \sigma \in \Sigma$ is a DFA

• In other words, all DFAs are NFAs

Source: Kani Archive

Equivalence of NFAs and DFAs

- Thus, we only need to show that for every NFA N , there exists an equivalent DFA *M*
	- What does it mean for two finite automata to be *equivalent?*
	- Given N , need to show can construct M such that

 $L(M) = L(N)$

Extended transition functions Equivalence of NFAs and DFAs

- For a DFA M we can say M accepts a string w if $\delta(q_0, w) \in F$ where $\delta_M : Q \times \Sigma^* \to Q$ is the extended transition function defined recursively ̂ ̂
	- $\delta_M(q, w) = q$ if $w \in \mathcal{E}$ ̂
	- $\delta_M(q, w) = \delta_M(\delta(q, a), x)$ if $w = ax$ for some $a \in \Sigma$ and $x \in \Sigma^*$ ̂ ̂
- What should the extended transition rule for an NFA be?
	- Need to be able to handle those spontaneous ε -transitions

• Then, the extended transition rule $\delta_N^{}$ for an NFA can be defined recursively: ̂ ̂ ̂ $\hat{\delta}_N(q, w) = \Box$ $p ∈ \delta_N(q, x)$ ̂

Extended transition functions Equivalence of NFAs and DFAs

- Define $E(q)$ to be the ε -reach of $q \in Q$. That is, let $E(q)$ be the set of states reachable from q by following zero or more ε arrows.
- We will also allow E to act on a set R :

 $E(R)$

$$
:= \bigcup_{r \in R} E(r)
$$

 $\hat{\delta}_N(q, w) = E(q)$ if $w = \varepsilon$

 $E(\delta(p, a))$ if $w = xa$ where $a \in \Sigma$

Subset construction method Equivalence of NFAs and DFAs

- Now we can say a DFA M and NFA N are equivalent if their extended transitions δ_M and δ_N agree on all words w . ̂
- Given, $N = (Q, \Sigma, \delta, q_0, F)$ let us try to construct a $M = (Q', \Sigma', \delta', q'_0, F')$ such that $L(M) = L(N)$.
	- Since they must recognize the same language, $\Sigma' = \Sigma$.
	-

• Next, an NFA can be in multiple states at once. At each instance, these various states will always be a subset of Q . Thus, we can set $Q'=2^\mathcal{Q}$.

Subset construction method Equivalence of NFAs and DFAs

- Next, we must define the transition rule for M incorporating those ε -transitions of N .
- From any state R in M (which, remember, is a set of states), if we consume a token a , we need to follow any edges labeled a , and then we need to take any ε -transitions from there. Thus we get:

 $\delta'(R, a) :=$

$$
= \bigcup_{q \in R} E\left(\delta(q, a)\right)
$$

• The final states of M should be the collection of states of N that are final states.

Subset construction method Equivalence of NFAs and DFAs

- Finally, it remains to specify the start and accept states q'_0 and F' respectively.
- From the start state, we immediately follow all ε -transitions. So set

$$
F' = \{ R \in
$$

 $q'_0 = E(q_0)$

$$
= \{ R \in \mathcal{Q}' \mid R \cap F \neq \emptyset \}
$$

$\frac{1}{2}$ ̂

• It can be done using induction on $|w|$ and fair bit of definition chasing.

- NFA
- Is the proof complete?
	- One way to finish the proof is to show $\delta_N(q_0, w) = \delta_M(q'_0, w)$ for *all w* ∈ Σ*
	-

• That completes the specification of a DFA M mimicking the functioning of an

Subset construction method Equivalence of NFAs and DFAs

Example - subset construction

We write software to automate tasks …

…. loops, subroutines and functions to avoid repetition and tedium …

… so why reinvent the wheel?

Standford's CS 103 Notes: [Guide to the Subset Construction](https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/notes/Guide%20to%20the%20Subset%20Construction.pdf)

Equivalence of DFAs and Regular Expressions

- Next, let us look at how one might construct a **regular expression out of a DFA**:
	- Highlighted red arrow in diagram
- Called *algebraic* because we end up solving a system of equations

Algebraic method Converting a DFA to Regular Expression

Source: Kani Archive

U,I

Algebraic method - Example Converting a DFA to Regular Expression

Example: The transition to q_1 can be written as

Key point: We can write a transition to a state as a juxtaposition of the prior state with the consumed token.

$$
q_1 = q_0 \cdot 0
$$

Algebraic method - Example Converting a DFA to Regular Expression

- $q_0 = \epsilon + q_1 1 + q_2 0$
- $q_1 = q_00$
- $q_2 = q_0 1$
- $q_3 = q_10+q_21+q_3(0+1)$

Now we simple solve the system of equations for q_0 (accept state)

0,1

Algebraic method - Example Converting a DFA to Regular Expression

- $q_0 = \epsilon + q_1 1 + q_2 0$
- $q_1 = q_00$
- $q_2 = q_0 1$
- $q_3 = q_10+q_21+q_3(0+1)$
- $q_0 = \epsilon + q_1 1 + q_2 0$
- $q_0 = \epsilon + q_0 01 + q_0 10$
- $q_0 = \epsilon + q_0 (01 + 10)$

Apply **Arden's Lemma**

$$
R = Q + RP = QP^*
$$

Arden's lemma Proof sketch

- Show that $R = Q + RP = QP^*$
- Start with $R = Q + RP$ and repeatedly plug-in the definition recursively
	- Once: $R = Q + (Q + RP)P$
	- \bullet Twice: $R = Q + (Q + (Q + RP) P) P$
	- … $R = Q(e + P + P^2 + P^3 + ...)$

Algebraic method - Example Converting a DFA to Regular Expression

- $q_0 = \epsilon + q_1 1 + q_2 0$
- $q_1 = q_00$
- $q_2 = q_0 1$
- $q_3 = q_10+q_21+q_3(0+1)$

$R = Q + RP = QP^*$

- $q_0 = \epsilon + q_1 1 + q_2 0$
- $q_0 = \epsilon + q_0 01 + q_0 10$
- $q_0 = \epsilon + q_0 (01 + 10)$

Apply **Arden's Lemma**

 $q_0 = \epsilon + q_0 (01 + 10)$ $q_0 = \epsilon(01 + 10)^* = (01 + 10)$ *

Equivalence of NFAs and Regular Expressions - State removal

Key observation

If $q_1 = \delta(q_0, x)$ and $q_2 = \delta(q_1, y)$ then $q_2 = \delta(q_1, y) = \delta(\delta(q_0, x), y)$ $= \delta(q_0, xy)$

State removal Converting a DFA to Regular Expression

Source: Kani Archive

State removal - example Converting a DFA to Regular Expression

 $q_0 = \delta(q_1,1)$ $q_1 = \delta(q_0,0)$ $q_0 = \delta(\delta(q_0, 0), 1)$ $q_0 = \delta(q_0, 01)$

 $q_2 = \delta(q_1,0)$ $q_2 = \delta(\delta(q_2,1),0)$ $q_1 = \delta(q_2,1)$ $q_2 = \delta(q_1, 10)$

State removal - example Converting a DFA to Regular Expression

$01 + (1 + 00)(10) * (0 + 11)$ *q*0

$01 + (1 + 00)(10)*(0 + 11)$ *q*0

start $(0.1 + (1 + 0.0)(10)*(0 + 11))^*$ Final expression:

- **Key idea:** We allow for a generalized NFA permitting arbitrary regular expression on the transition arrows.
	- Here R_{11} , R_{12} , R_{21} and R_{22} are valid regular expressions
	- Can we get a clean regular expression from this NFA?

Converting a NFA to Regular Expression State removal

- **Step 1: Normalize**
	- Add a new start state q_s and accept state q_f to the NFA.
	- Add an ε -transition from q_s to the old start state of N .
	- Add $ε$ -transitions from each accepting state of N to q_f then mark them as *not accepting.*

- **Step 2: Remove states**
	- Repeatedly remove states other than q_s and q_f from the NFA by "shortcutting" them until only two states remain: q_s and q_f .
	- The transition from q_s to q_f is then a regular expression for the NFA.

- **Step 2: Details**
	- For each pair (q_1, q_2) such that

Add a transition such that

$$
q_1 \stackrel{R_{in}}{\rightarrow} q, \quad q \stackrel{R_{out}}{\rightarrow} q_2
$$

$$
q_2 = \delta\left(q_1, R_{in} \cdot R_q^* \cdot R_{out}\right)
$$

where $R_q^{}$ is a self-transition (if any)

- **Step 2: Details**
	- For each pair (q_1, q_2) such that

Add a transition such that

$$
q_1 \stackrel{R_{in}}{\rightarrow} q, \quad q \stackrel{R_{out}}{\rightarrow} q_2
$$

$$
q_2 = \delta\left(q_1, R_{in} \cdot R_q^* \cdot R_{out}\right)
$$

where $R_q^{}$ is a self-transition (if any)

- **Step 2: Details**
	- For each pair (q_1, q_2) such that

Add a transition such that

$$
q_1 \stackrel{R_{in}}{\rightarrow} q, \quad q \stackrel{R_{out}}{\rightarrow} q_2
$$

$$
q_2 = \delta\left(q_1, R_{in} \cdot R_q^* \cdot R_{out}\right)
$$

where $R_q^{}$ is a self-transition (if any)

- **Step 2: Details**
	- For each pair (q_1, q_2) such that

Use union operation to handle multiple transitions

Add a transition such that

$$
q_1 \stackrel{R_{in}}{\rightarrow} q, \quad q \stackrel{R_{out}}{\rightarrow} q_2
$$

$$
q_2 = \delta\left(q_1, R_{in} \cdot R_q^* \cdot R_{out}\right)
$$

Equivalence of NFAs and Regular Expressions - Thompson's algorithm

Thompson's algorithm NFA from a RegEx

- **Key idea:** Represent regular operations (Union, Concatenation & Kleene Star) using NFAs.
- Given: Two NFAs S and representing languages $L_{\rm S}$ and $\frac{T}{L_S}$ *L T*
	- What NFA represents $L_S \cdot L_T$, L_S+L_T and *T T L* **S*

- **• Concatenation**
- $L = L_s \cdot L_t$
	- "Series connection"

Regular operation rules NFA from a RegEx

- **• Union**
- $L = L_S + L_T$
	- "Parallel connection"

NFA from a RegEx Regular operation rules

NFA from a RegEx Regular operation rules

- **• Kleene star**
- $L = L_s^*$ *s*
	- Need to allow the empty string
	- Need to allow multiple copies of any $w \in L_S$

NFA from a RegEx Example

- **Find an NFA for** $(0 + 1)*(101 + 010)(0 + 1)*$
- Rewrite:

ε

ε

NFA from a RegEx Example

NA N_B *NA*

$(0+1)^{*} \cdot (101+010) \cdot (0+1)^{*} = (0+1)^{*} \cdot (\underline{101} + \underline{010}) \cdot (0+1)^{*}$ $(N_0 + N_1)^*$ N_C $\overline{}$ $\overline{}$ N_D $(N_0+N_1)^*$

NFA from a RegEx Example

NA N_B *NA*

 $(N_C + N_D)$

Regular Expression to DFA - Brzozowski's algorithm

Skipped - see Kani Archive for more information

Figure from Kani Archive

Summary Next class: Languages that are not regular

