
All mistakes are my own! - Ivan Abraham (Fall 2024)

Equivalence of DFAs, NFAs & 
Regular Expressions
Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.



• The point of this lecture is to 
establish that we gain no 
additional computational chops 
by choosing one of DFA/NFA/
RegEx (Regular Expressions) 
over the other. 


• They all represent the same class 
of language - regular languages. 

Goal of lecture
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Kleene’s Theorem ~ 1951

A language  can be described by a regular 
expression if and only if  is the language 
accepted by a DFA.

L
L
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• Each of the arrows in the figure 
on the right could be formally 
proved … but


• We will only look at the Subset 
Construction formally.


• For the remaining, we will 
“prove by example.” 

Outline of lecture
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Equivalence of DFAs and NFAs
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Formal definitions
Deterministic Finite Automaton

Recall that the formal definition of a DFA is as follows. A DFA is a 5-tuple 




where 


•  is a finite set of states,  

•  is a finite set of tokens/characters called the alphabet, 


•  is a transition function that encodes state changes when a token from 
the alphabet is consumed, 


•  is a single distinguished state called the start state, 

•  is a set of distinguished states called the accept or final states. 

M = (Q, Σ, δ, q0, F)

Q
Σ
δ : Q × Σ → Q

q0 ∈ Q
F ⊆ Q
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Formal definitions
Nondeterministic Finite Automaton

Recall that the formal definition of an NFA is as follows. A NFA is a 5-tuple 




where 


•  is a finite set of states,  

•  is a finite set of tokens/characters called the alphabet, 


•  is a transition rule that encodes state changes when a token from 
the alphabet is consumed, 


•  is a single distinguished state called the start state, 

•  is a set of distinguished states called the accept or final states. 

N = (Q, Σ, δ, q0, F)

Q
Σ
δ : Q × Σ ∪ ε → 2Q

q0 ∈ Q
F ⊆ Q
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Equivalence of NFAs and DFAs
Key difference

• NFAs we have introduced allow 
spontaneous transitions (called 
-transitions)


• NFAs could be in multiple states 
simultaneously


• NFAs need not spell out every 
transition 

ε
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• Therefore, an NFA without any - 
transitions and such that 








for all  is a DFA


• In other words, all DFAs are NFAs

ε

|δ(q, σ) | ≤ 1

δ(q, σ) ≠ Ø

q ∈ Q, σ ∈ Σ



• Thus, we only need to show that 
for every NFA , there exists an 
equivalent DFA 


• What does it mean for two finite 
automata to be equivalent? 

• Given , need to show can 
construct  such that


N
M

N
M

L(M) = L(N)
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Extended transition functions

• For a DFA  we can say  accepts a string  if  where 
 is the extended transition function defined recursively


•  if 


•  if  for some  and 


• What should the extended transition rule for an NFA be? 


• Need to be able to handle those spontaneous -transitions

M M w ̂δ(q0, w) ∈ F
̂δM : Q × Σ* → Q

̂δM(q, w) = q w ∈ ε

̂δM(q, w) = ̂δM (δ(q, a), x) w = ax a ∈ Σ x ∈ Σ*

ε
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Extended transition functions

• Define  to be the -reach of . That is, let  be the set of states 
reachable from  by following zero or more  arrows. 


• We will also allow  to act on a set :


 


• Then, the extended transition rule  for an NFA can be defined recursively:





    if  where 

E(q) ε q ∈ Q E(q)
q ε

E R

E(R) := ⋃
r∈R

E(r)

̂δN

̂δN (q, w) = E(q) if w = ε

̂δN (q, w) = ⋃
p∈ ̂δN(q, x)

E(δ(p, a)) w = xa a ∈ Σ
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Subset construction method

• Now we can say a DFA  and NFA  are equivalent if their extended 
transitions  and  agree on all words .


• Given, let us try to construct a 
such that .


• Since they must recognize the same language, .


• Next, an NFA can be in multiple states at once. At each instance, these 
various states will always be a subset of . Thus, we can set .

M N
̂δM

̂δN w

N = (Q, Σ, δ, q0, F) M = (Q′￼, Σ′￼, δ′￼, q′￼0, F′￼)
L(M) = L(N)

Σ′￼ = Σ

Q Q′￼ = 2Q
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Subset construction method

• Next, we must define the transition rule for  incorporating those 
-transitions of .


• From any state  in  (which, remember, is a set of states), if we consume a 
token , we need to follow any edges labeled , and then we need to take 
any -transitions from there. Thus we get:


M ε
N

R M
a a

ε

δ′￼(R, a) := ⋃
q∈R

E (δ(q, a))
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Subset construction method

• Finally, it remains to specify the start and accept states  and  respectively.


• From the start state, we immediately follow all -transitions. So set 





• The final states of   should be the collection of states of   that are final 
states.


q′￼0 F′￼

ε

q′￼0 = E (q0)
M N

F′￼ = {R ∈ Q′￼ ∣ R ∩ F ≠ ∅}
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Subset construction method

• That completes the specification of a DFA  mimicking the functioning of an 
NFA . 


• Is the proof complete? 


• One way to finish the proof is to show  for all 



• It can be done using induction on  and fair bit of definition chasing. 

M
N

̂δN(q0, w) = ̂δM(q′￼0, w)
w ∈ Σ*

|w |
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Standford's CS 103 Notes: Guide to the Subset Construction

Example - subset construction
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We write software to automate tasks … 


…. loops, subroutines and functions to avoid repetition and tedium … 


… so why reinvent the wheel?

https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/notes/Guide%20to%20the%20Subset%20Construction.pdf


Equivalence of DFAs and Regular 
Expressions
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Algebraic method

• Next, let us look at how one 
might construct a regular 
expression out of a DFA:


• Highlighted red arrow in 
diagram 


• Called algebraic because we end 
up solving a system of equations 
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Algebraic method - Example
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Converting a DFA to Regular Expression

q0 q1

q2 q3

0

1

0 0

1

1

0,1

Key point: We can write a 
transition to a state as a 
juxtaposition of the prior state with 
the consumed token. 


Example: The transition to  can 
be written as 





q1

q1 = q0 ⋅ 0



Algebraic method - Example
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Converting a DFA to Regular Expression

q0 q1

q2 q3

0

1

0 0

1

1

0,1

• 


•  


• 


• 


Now we simple solve the system of 
equations for  (accept state)

q0 = ϵ + q11+q20

q1 = q00

q2 = q01

q3 = q10+q21+q3(0 + 1)

q0



Algebraic method - Example
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Converting a DFA to Regular Expression

• 


• 


• 


Apply Arden’s Lemma

q0 = ϵ + q11+q20

q0 = ϵ + q001+q010

q0 = ϵ + q0 (01 + 10)

• 


•  


• 


•

q0 = ϵ + q11+q20

q1 = q00

q2 = q01

q3 = q10+q21+q3(0 + 1)

R = Q + RP = QP*



Arden’s lemma
Proof sketch

• Show that 


• Start with  and repeatedly plug-in the definition recursively


• Once: 


• Twice: 


• … 

R = Q + RP = QP*

R = Q + RP

R = Q+(Q + RP) P

R = Q+(Q+(Q + RP) P) P

R = Q (ε + P + P2 + P3 + …)
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Algebraic method - Example
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Converting a DFA to Regular Expression

• 


• 


• 


Apply Arden’s Lemma 




q0 = ϵ + q11+q20

q0 = ϵ + q001+q010

q0 = ϵ + q0 (01 + 10)

q0 = ϵ + q0 (01 + 10)

q0 = ϵ(01 + 10)* = (01 + 10)*

• 


•  


• 


•

q0 = ϵ + q11+q20

q1 = q00

q2 = q01

q3 = q10+q21+q3(0 + 1)

R = Q + RP = QP*



Equivalence of NFAs and Regular 
Expressions - State removal
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State removal

Key observation  

If  and  

then


q1 = δ(q0, x) q2 = δ(q1, y)

q2 = δ(q1, y) = δ(δ(q0, x), y)
= δ(q0, xy)
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State removal - example
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Converting a DFA to Regular Expression

q0 q2

q1

start

0 0

0

1 1

1

q0 = δ(q1,1) q1 = δ(q0,0)

q0 = δ(δ(q0,0),1)
q0 = δ(q0,01)

q2 = δ(q1,0)

q2 = δ(δ(q2,1),0)

q1 = δ(q2,1)

q2 = δ(q1,10)



State removal - example
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Converting a DFA to Regular Expression

q0 q2

q1

start

0 0

0

1 1

1 q0 q2
start

01 10

1+00

0+11



State removal
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Converting a DFA to Regular Expression

01 + (1 + 00)(10)*(0 + 11)

q0
start q0 q2

start

01 10

1+00

0+11



State removal
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Converting a DFA to Regular Expression

01 + (1 + 00)(10)*(0 + 11)

q0
start (01 + (1 + 00)(10)*(0 + 11))*

Final expression:



• Key idea: We allow for a 
generalized NFA permitting 
arbitrary regular expression on 
the transition arrows. 


• Here  and  are 
valid regular expressions 


• Can we get a clean regular 
expression from this NFA? 

R11, R12, R21 R22
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Converting a NFA to Regular Expression
State removal

q1 q2

R21

R12

R11
R22



qf

State removal
Converting a NFA to Regular Expression

• Step 1: Normalize  

• Add a new start state  and 
accept state  to the NFA.


• Add an -transition from  to 
the old start state of .


• Add -transitions from each 
accepting state of  to  then 
mark them as not accepting.

qs
qf

ε qs
N

ε
N qf

q1

R21

R12

R11
R22

qs
q2

ε ε



State removal
Converting a NFA to Regular Expression

• Step 2: Remove states  

• Repeatedly remove states 
other than  and  from the 
NFA by “shortcutting” them 
until only two states remain: 
and .


• The transition from  to  is 
then a regular expression for 
the NFA.

qs qf

qs
qf

qs qf qs qf
Regular expression

q1

R21

R12

R11
R22

qs
qfq2

ε ε



State removal
Converting a NFA to Regular Expression

• Step 2: Details 

• For each pair  such that





Add a transition such that





where  is a self-transition (if any)


• Use union operation to handle multiple 
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

q1

R21

R12

R11
R22

qs
qfq2

ε ε

εR*11R12



qf

State removal
Converting a NFA to Regular Expression

• Step 2: Details 

• For each pair  such that





Add a transition such that





where  is a self-transition (if any)


• Use union operation to handle multiple 
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

q1

R21

R12

R11
R22

qs
q2

ε ε

R21R*11R12



State removal
Converting a NFA to Regular Expression

• Step 2: Details 

• For each pair  such that





Add a transition such that





where  is a self-transition (if any)


• Use union operation to handle multiple 
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

R22

qs
qfq2

ε

R21R*11R12

εR*11R12



State removal
Converting a NFA to Regular Expression

• Step 2: Details 

• For each pair  such that





Add a transition such that





where  is a self-transition (if any)


• Use union operation to handle multiple 
transitions

(q1, q2)

q1
Rin q, q

Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq qs qf

R*11R12(R22 + R21R*11R12)
*
ε

qs
qfq2

ε

R22 + R21R*11R12

R*11R12

R22

R21R*11R12



Equivalence of NFAs and Regular 
Expressions - Thompson’s 
algorithm
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Thompson’s algorithm

• Key idea: Represent regular 
operations (Union, 
Concatenation & Kleene Star) 
using NFAs. 


• Given: Two NFAs  and  
representing languages  and 




• What NFA represents , 
 and 

S T
LS

LT

LS ⋅ LT
LS + LT L*S

NFA from a RegEx

38

qi qf…

S

qi qf…

T



qi qf…

T

Regular operation rules

• Concatenation 

•  

• “Series connection”

L = Ls ⋅ Lt

NFA from a RegEx
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qi qf…

S
q0 qF

ε

ε
ε



qi qf…

T

• Union 

•  

• “Parallel connection”

L = LS + LT

NFA from a RegEx
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qi qf…

S
q0 qF

ε

ε

ε

ε

Regular operation rules



• Kleene star 

•  

• Need to allow the empty 
string


• Need to allow multiple 
copies of any 

L = L*s

w ∈ LS

NFA from a RegEx
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qi qf…

S
q0 qF

ε ε

Regular operation rules

ε

ε



• Find an NFA for  

• Rewrite:

(0 + 1)*(101 + 010)(0 + 1)*

NFA from a RegEx
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Example

(0 + 1)*

NA

⋅ (101 + 010)

NB

⋅ (0 + 1)*

NA

= (0 + 1)*

(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*

(N0 + N1)*

N0 qi qf

N1 qi qf

0

1
N0 + N1

qi qf

qi qf

0

1

q0 qF

ε

ε

ε

ε



NFA from a RegEx
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Example

(0 + 1)*

NA

⋅ (101 + 010)

NB

⋅ (0 + 1)*

NA

= (0 + 1)*

(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*

(N0+N1)*

N0 + N1

qi qf

qi qf

0

1

q0 qF

ε

ε

ε

ε

(N0 + N1)*

0

εq′￼0 q′￼F

qi qf

qi qf1

q0 qF

ε

ε

ε

ε

ε ε

ε



NFA from a RegEx
Example

(0 + 1)*

NA

⋅ (101 + 010)

NB

⋅ (0 + 1)*

NA

= (0 + 1)*

(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*

(N0+N1)*

(NC + ND)

q0 q1 q2 qf
1 10

q0 q1 q2 qf
0 01

q0 qF

ε

ε

ε

ε



Regular Expression to DFA - 
Brzozowski’s algorithm

45

Skipped - see Kani Archive for more information



Summary

Figure from Kani Archive

Next class: Languages that are not regular 
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