
All mistakes are my own! - Ivan Abraham (Fall 2024)

Equivalence of DFAs, NFAs & 
Regular Expressions
Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.



• The point of this lecture is to 
establish that we gain no 
additional computational chops 
by choosing one of DFA/NFA/
RegEx (Regular Expressions) 
over the other. 

Goal of lecture
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• The point of this lecture is to 
establish that we gain no 
additional computational chops 
by choosing one of DFA/NFA/
RegEx (Regular Expressions) 
over the other. 

• They all represent the same class 
of language - regular languages. 

Goal of lecture
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Kleene’s Theorem ~ 1951

A language  can be described by a regular 
expression if and only if  is the language 
accepted by a DFA.

L
L
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• Each of the arrows in the figure 
on the right could be formally 
proved … but

Outline of lecture

4

Source: Kani Archive

REGULAR  
EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg 
Stat

e r
em

ov
al →

 NFA  →
DFA

Algebraic Method



• Each of the arrows in the figure 
on the right could be formally 
proved … but

• We will only look at the Subset 
Construction formally.

Outline of lecture
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• Each of the arrows in the figure 
on the right could be formally 
proved … but

• We will only look at the Subset 
Construction formally.

• For the remaining, we will 
“prove by example.” 

Outline of lecture
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Equivalence of DFAs and NFAs
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Formal definitions
Deterministic Finite Automaton

Recall that the formal definition of a DFA is as follows. A DFA is a 5-tuple 
M = (Q, Σ, δ, q0, F)

where 
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Formal definitions
Nondeterministic Finite Automaton

Recall that the formal definition of an NFA is as follows. A NFA is a 5-tuple 




where 

•  is a finite set of states,  
•  is a finite set of tokens/characters called the alphabet, 

•  is a transition rule that encodes state changes when a token from 

the alphabet is consumed, 

•  is a single distinguished state called the start state, 

•  is a set of distinguished states called the accept or final states. 

N = (Q, Σ, δ, q0, F)

Q
Σ
δ : Q × Σ ∪ ε → 2Q

q0 ∈ Q
F ⊆ Q
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Equivalence of NFAs and DFAs
Key difference

• NFAs we have introduced allow 
spontaneous transitions (called 
-transitions)

ε

• NFAs could be in multiple states 
simultaneously

• NFAs need not spell out every 
transition 
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• Thus, we only need to show that 
for every NFA , there exists an 
equivalent DFA 

N
M
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• Thus, we only need to show that 
for every NFA , there exists an 
equivalent DFA 

N
M

• What does it mean for two finite 
automata to be equivalent?
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• Thus, we only need to show that 
for every NFA , there exists an 
equivalent DFA 

N
M

• What does it mean for two finite 
automata to be equivalent?

• Given , need to show can 
construct  such that

N
M

L(M) = L(N)
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Extended transition functions

• For a DFA  we can say  accepts a string  if  where 
 is the extended transition function defined recursively

M M w ̂δ(q0, w) ∈ F
̂δM : Q × Σ* → Q
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Extended transition functions

• Define  to be the -reach of . That is, let  be the set of states 
reachable from  by following zero or more  arrows. 

E(q) ε q ∈ Q E(q)
q ε

11
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Extended transition functions

• Define  to be the -reach of . That is, let  be the set of states 
reachable from  by following zero or more  arrows. 

E(q) ε q ∈ Q E(q)
q ε

• We will also allow  to act on a set :E R

 E(R) := ⋃
r∈R

E(r)

11
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Extended transition functions

• Define  to be the -reach of . That is, let  be the set of states 
reachable from  by following zero or more  arrows. 

E(q) ε q ∈ Q E(q)
q ε

• We will also allow  to act on a set :E R

 E(R) := ⋃
r∈R

E(r)

• Then, the extended transition rule  for an NFA can be defined recursively:̂δN
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Extended transition functions

• Define  to be the -reach of . That is, let  be the set of states 
reachable from  by following zero or more  arrows. 

E(q) ε q ∈ Q E(q)
q ε

• We will also allow  to act on a set :E R

 E(R) := ⋃
r∈R

E(r)

• Then, the extended transition rule  for an NFA can be defined recursively:̂δN

̂δN (q, w) = E(q) if w = ε
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Extended transition functions

• Define  to be the -reach of . That is, let  be the set of states 
reachable from  by following zero or more  arrows. 

E(q) ε q ∈ Q E(q)
q ε

• We will also allow  to act on a set :E R

 E(R) := ⋃
r∈R

E(r)

• Then, the extended transition rule  for an NFA can be defined recursively:̂δN

̂δN (q, w) = E(q) if w = ε

    if  where ̂δN (q, w) = ⋃
p∈ ̂δN(q, x)

E(δ(p, a)) w = xa a ∈ Σ
11
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Subset construction method

• Now we can say a DFA  and NFA  are equivalent if their extended 
transitions  and  agree on all words .

M N
̂δM ̂δN w
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Subset construction method

• Next, we must define the transition rule for  incorporating those 
-transitions of .

M ε
N
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Subset construction method

• Next, we must define the transition rule for  incorporating those 
-transitions of .

M ε
N

• From any state  in  (which, remember, is a set of states), if we consume a 
token , we need to follow any edges labeled , and then we need to take 
any -transitions from there. Thus we get:

R M
a a

ε

13
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Subset construction method

• Finally, it remains to specify the start and accept states  and  respectively.q′ 0 F′ 

14
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Subset construction method

• That completes the specification of a DFA  mimicking the functioning of an 
NFA . 

M
N

• Is the proof complete? 

15
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Subset construction method

• That completes the specification of a DFA  mimicking the functioning of an 
NFA . 

M
N

• Is the proof complete? 

• One way to finish the proof is to show  for all ̂δN(q0, w) = ̂δM(q′ 0, w)
w ∈ Σ*

15
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Subset construction method

• That completes the specification of a DFA  mimicking the functioning of an 
NFA . 

M
N

• Is the proof complete? 

• One way to finish the proof is to show  for all ̂δN(q0, w) = ̂δM(q′ 0, w)
w ∈ Σ*

• It can be done using induction on  and fair bit of definition chasing. |w |

15
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Standford's CS 103 Notes: Guide to the Subset Construction

Example - subset construction

16

We write software to automate tasks … 


…. loops, subroutines and functions to avoid repetition and tedium … 


… so why reinvent the wheel?



Equivalence of DFAs and Regular 
Expressions
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Algebraic method

• Next, let us look at how one 
might construct a regular 
expression out of a DFA:

• Highlighted red arrow in 
diagram 

18
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Algebraic method

• Next, let us look at how one 
might construct a regular 
expression out of a DFA:

• Highlighted red arrow in 
diagram 

• Called algebraic because we end 
up solving a system of equations 

18
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Algebraic method - Example

19

Converting a DFA to Regular Expression

q0 q1

q2 q3

0

1

0 0

1

1

0,1

Key point: We can write a 
transition to a state as a 
juxtaposition of the prior state with 
the consumed token. 

arowt
state

addanum S

↑

Example
-

q = go
·D



Algebraic method - Example
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Converting a DFA to Regular Expression

q0 q1

q2 q3

0

1

0 0

1

1

0,1

90
= 2 + q , 1 + g2

-0

q)
= Go

·8

82 = gol

93 = 9 10 + 42 + 9 . (0 +1) ↓
↳ won't use it



Algebraic method - Example
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Converting a DFA to Regular Expression

• q0 = ϵ + q11+q20• 


•  


• 


•

q0 = ϵ + q11+q20
q1 = q00
q2 = q01
q3 = q10+q21+q3(0 + 1)

90 = Et g001 + g00

= E + go (01 + 10)
use Arden's Lemna.

R =a + RP

= ap



Arden’s lemma
Proof sketch

• Show that R = Q + RP = QP*

22

R = 0 + RP

= ot (a + RD)P

= a + [a + (a + rp)P]P

i *

R = a(z + p + p + B + ...) = ap



Algebraic method - Example
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Converting a DFA to Regular Expression

• q0 = ϵ + q11+q20

• q0 = ϵ + q001+q010

• q0 = ϵ + q0 (01 + 10)

Apply Arden’s Lemma

• 


•  


• 


•

q0 = ϵ + q11+q20
q1 = q00
q2 = q01
q3 = q10+q21+q3(0 + 1)

R = Q + RP = QP*

↳
R

*

go
= 2

. (01 +10)

= (01 +10) #



Equivalence of NFAs and Regular 
Expressions - State removal

24



State removal

Key observation 

If  and q1 = δ(q0, x) q2 = δ(q1, y)

25
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State removal

Key observation 

If  and q1 = δ(q0, x) q2 = δ(q1, y)
then

q2 = δ(q1, y) = δ(δ(q0, x), y)
= δ(q0, xy)

25

Source: Kani Archive

Converting a DFA to Regular Expression
REGULAR  

EXPRESSIONS

NFAs DFAs
Subset Construction

Th
om

pso
n’s

 Alg 
Stat

e r
em

ov
al →

 NFA  →
DFA

Algebraic Method



State removal - example
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Converting a DFA to Regular Expression

q0 q2

q1

start

0 0

0

1 1

1

q0 = δ(q1,1) q1 = δ(q0,0)

q0 = δ(δ(q0,0),1)
q0 = δ(q0,01)

q2 = δ(q1,0)
q2 = δ(δ(q2,1),0)

q1 = δ(q2,1)

q2 = δ(q1,10)



State removal - example
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q0 q2

q1

start

0 0
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1 1

1 q0 q2
start

01 10

1+00
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State removal
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Converting a DFA to Regular Expression

01 + (1 + 00)(10)*(0 + 11)

q0
start q0 q2

start

01 10

1+00

0+11



State removal
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Converting a DFA to Regular Expression

01 + (1 + 00)(10)*(0 + 11)

q0
start (01 + (1 + 00)(10)*(0 + 11))*

Final expression:



• Key idea: We allow for a 
generalized NFA permitting 
arbitrary regular expression on 
the transition arrows. 

30

Converting a NFA to Regular Expression
State removal

q1 q2
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R11 R22
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State removal
Converting a NFA to Regular Expression

• Step 1: Normalize 

q1

R21

R12

R11 R22

q2



qf

State removal
Converting a NFA to Regular Expression

• Step 1: Normalize 

• Add a new start state  and 
accept state  to the NFA.

qs
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State removal
Converting a NFA to Regular Expression

• Step 1: Normalize 

• Add a new start state  and 
accept state  to the NFA.

qs
qf

• Add an -transition from  to 
the old start state of .

ε qs
N
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State removal
Converting a NFA to Regular Expression

• Step 1: Normalize 

• Add a new start state  and 
accept state  to the NFA.

qs
qf

• Add an -transition from  to 
the old start state of .

ε qs
N

• Add -transitions from each 
accepting state of  to  then 
mark them as not accepting.

ε
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State removal
Converting a NFA to Regular Expression

• Step 1: Normalize 

• Add a new start state  and 
accept state  to the NFA.

qs
qf

• Add an -transition from  to 
the old start state of .

ε qs
N

• Add -transitions from each 
accepting state of  to  then 
mark them as not accepting.
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State removal
Converting a NFA to Regular Expression

• Step 2: Remove states 
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State removal
Converting a NFA to Regular Expression

• Step 2: Remove states 

• Repeatedly remove states 
other than  and  from the 
NFA by “shortcutting” them 
until only two states remain: 
and .
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State removal
Converting a NFA to Regular Expression

• Step 2: Remove states 

• Repeatedly remove states 
other than  and  from the 
NFA by “shortcutting” them 
until only two states remain: 
and .

qs qf

qs
qf

• The transition from  to  is 
then a regular expression for 
the NFA.

qs qf qs qf
Regular expression

q1

R21

R12

R11 R22

qs
qfq2

ε ε



State removal
Converting a NFA to Regular Expression

• Step 2: Details 

• For each pair  such that





Add a transition such that





where  is a self-transition (if any)


• Use union operation to handle multiple 
transitions

(q1, q2)

q1
Rin q, q Rout q2

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
Rq

q1

R21
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R11 R22

qs
qfq2

ε ε
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State removal
Converting a NFA to Regular Expression
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State removal
Converting a NFA to Regular Expression

• Step 2: Details 

• For each pair  such that





Add a transition such that





where  is a self-transition (if any)
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State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair  such that(q1, q2)

q1
Rin q, q Rout q2

Add a transition such that
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State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair  such that(q1, q2)
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State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair  such that(q1, q2)

q1
Rin q, q Rout q2

Add a transition such that

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
where  is a self-transition (if any)Rq

• Use union operation to handle multiple 
transitions

qs
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State removal
Converting a NFA to Regular Expression

• Step 2: Details

• For each pair  such that(q1, q2)

q1
Rin q, q Rout q2

Add a transition such that

q2 = δ (q1, Rin ⋅ R*q ⋅ Rout)
where  is a self-transition (if any)Rq

• Use union operation to handle multiple 
transitions

qs qf

R*11R12(R22 + R21R*11R12)
*
ε

qs
qfq2

ε

R22 + R21R*11R12

R*11R12



Equivalence of NFAs and Regular 
Expressions - Thompson’s 
algorithm

37



Thompson’s algorithm

• Key idea: Represent regular 
operations (Union, 
Concatenation & Kleene Star) 
using NFAs. 

NFA from a RegEx
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Thompson’s algorithm

• Key idea: Represent regular 
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• Given: Two NFAs  and  
representing languages  and 

S T
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NFA from a RegEx
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Thompson’s algorithm

• Key idea: Represent regular 
operations (Union, 
Concatenation & Kleene Star) 
using NFAs. 

• Given: Two NFAs  and  
representing languages  and 

S T
LS

LT

• What NFA represents , 
 and 

LS ⋅ LT
LS + LT L*S

NFA from a RegEx

38

qi qf…

S

qi qf…
T



qi qf…
T

Regular operation rules

• Concatenation

• L = Ls ⋅ Lt

NFA from a RegEx

39

qi qf…

S

LS

27
-

qF
"Series connection" ⑳ ! O

E

↑E



qi qf…
T

• Union

• L = LS + LT

• “Parallel connection”

NFA from a RegEx

40

qi qf…

S
q0 qF

ε

ε

ε

ε

Regular operation rules



• Kleene star

• L = L*s

NFA from a RegEx

41

qi qf…

S
q0 qF

ε ε

Regular operation rules

-4

should include

-T
· eupty string
· repetitions -



• Find an NFA for  

• Rewrite:

(0 + 1)*(101 + 010)(0 + 1)*

NFA from a RegEx

42

Example

-
NA Ne No

WA = No + N , i

i De&
No : De No +N , ⑩ I ⑰

I
-Gi

Ni : git



• Find an NFA for  

• Rewrite:

(0 + 1)*(101 + 010)(0 + 1)*

NFA from a RegEx

42

Example

(0 + 1)*
NA

⋅ (101 + 010)
NB

⋅ (0 + 1)*
NA

= (0 + 1)*
(N0 + N1)*

⋅ (101⏟
NC

+ 010⏟
ND

) ⋅ (0 + 1)*
(N0 + N1)*

N0 qi qf0



• Find an NFA for  

• Rewrite:

(0 + 1)*(101 + 010)(0 + 1)*

NFA from a RegEx

42

Example

(0 + 1)*
NA

⋅ (101 + 010)
NB
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Regular Expression to DFA - 
Brzozowski’s algorithm
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Skipped - see Kani Archive for more information



Summary

Figure from Kani Archive
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