
All mistakes are my own! - Ivan Abraham (Fall 2024)

Non-regularity and fooling sets
Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.

Introduce the next computability class

• So far, we have dealt with regular
languages - if we bothered to
name some as regular, are there
some that aren’t regular?

• Irregular? Non-regular?

• Indeed, one goal of the first
part of 374 is to introduce the
computability classes -
Chomsky's Hierarchy

Goal of lecture

2

regular

context free

context sensitive

recursively enumerable

regular

Source: Kani Archive

context free

• Introduce non-regular languages

• An argument for existence

• A classic example of a non-regular
languages - context free languages

• Methods for showing when a
language is non-regular

• Fooling sets & closure properties

• Myhill-Nerode Theorem

Lecture outline

3

regular

context sensitive

recursively enumerable

context free

Source: Kani Archive

What languages are non-regular?
Are there non-regular languages to begin with?

• Recall Kleene’s theorem:

The classes of languages accepted by DFAs, NFAs, and regular
expressions are the same.

• Question: Why should non-regular language exist? What if the above class
(regular languages) are the only kind of languages?

• This is related to the question of countable and uncountable infinities.

• Fact: There are strictly more real numbers than there are integers!

4

Non-regular languages
Existence of non-regular languages

• Integers can be counted (or put in 1-1 correspondence) - called countably
infinite.

• The real numbers are uncountable (c.f. Cantor’s diagonalization argument) —
called uncountably infinite.

• Similarly, while the class of regular languages is countably infinite, the set of all
languages is uncountably infinite.

• In other words, there must exist languages that are not regular.

• This isn’t a “proof,” but we can readily provide an example of a non-regular
language

5

https://en.wikipedia.org/wiki/Cantor's_theorem

Lemma: is not regular.L1

6

L1 = {0n1n ∣ n ≥ 0} = {ϵ,01,0011,000111,…}

Question: Proof?

Intuition: Any program that recognizes seems to require counting the number
of zeros in the input so that it can then compare it to the number of ones—this
cannot be done with fixed memory for all .

How do we formalize intuition and come up with a proof?

L

n

A simple and canonical non-regular language

A simple and canonical non-regular language
Building intuition

7

q0
start

0000

1111

11

1111

11

00

00001111

000011

001111

0011

• Can the two green
colored states be the
same?

• What happens if
they are?

• Suppose they are
the same …

A simple and canonical non-regular language
Building intuition

• Can the two green
colored states be the
same?

• What happens if
they are?

• Suppose they are
the same …

q0 qnqk

0000

00

00001111

001111

After reaching , the DFA sees the same suffix 1111 …
should be an accepting state or non-accepting state?

qk
qn

Proof by contradiction

9

• Suppose is regular. Then there is a DFA which recognizes .

• Let) where is finite.

L M L

M = (Q, {0,1}, δ, s, A) |Q |

qs q0 q00

q01 q001

qreject

q0011

0 0 0

1 1

1 1
00,1

0,1
0,1

start q0i q0i+1
0 0

1

….

….

Proof by contradiction

10

• Suppose is regular. Then there is a DFA which recognizes .

• Let) where is finite. Consider strings

for a total of strings. What states does reach on the above strings?

• Let . By pigeon-hole principle for some .

• That is, is in the same state after reading and where . Then
should accept but then it will also accept where .

• This contradicts the fact that is a DFA for . Thus, there is no DFA for .

L M L

M = (Q, {0,1}, δ, s, A) |Q | = n

ϵ,0,00,000,...0n

n + 1 M

q0i = ̂δ(s,0i) q0i = q0 j 0 ≤ i < j ≤ n

M 0i 0 j i ≠ j M
0i1i 0 j1i i ≠ j

M L L

• Fooling sets: Also called the method of distinguishing suffixes. To
prove that it is non-regular, find an infinite fooling set.

• Closure properties: Use existing non-regular languages and regular
languages to prove that some new language is non-regular.

• Pumping lemma: We will not cover it but it is sometimes an easier
proof technique to apply, but not as general as the fooling set
technique - there are many different pumping lemmas for different
classes of languages.

L

Proving non-regularity: Methods

11

Proving non-regularity: Fooling sets

12

Fooling set method
Definitions: what is meant by distinguishable?

• Given a DFA recognizing a language
 defined over , we say two states

 are equivalent if, for all

• We say two states are
distinguishable if such that
exactly one of or is in .

M
L(M) Σ
p, q ∈ Q w ∈ Σ*

̂δ (p, w) ∈ A ⇔ ̂δ (q, w) ∈ A

p, q ∈ Q
∃w ∈ Σ*

̂δ(p, w) ̂δ(q, w) A

13

q0

q1

q2

q3

q4

0

1 10

1

1

0 0

Source: Kani Archive

Fooling set method
Definitions: what is meant by distinguishable?

• In light of the previous definitions, denote

• We say two strings are distinguishable relative to if
 and are distinguishable.

• In other words, two strings are distinguishable relative to
 if such that precisely one of or is in .

Ωw := ̂δ (q0, w)
x, y ∈ Σ* L(M)

Ωx Ωy

x, y ∈ Σ*
L(M) ∃w ∈ Σ* xw yw L(M)

14

Fooling sets
Definition

For a language over , a set of strings (could be infinite) is a fooling
set or distinguishing set for , if every two distinct strings are
distinguishable.

Example:

 is a fooling set for the language

Theorem:
Suppose is a fooling set for . If is finite then there is no DFA

that accepts with less than states.

L Σ F
L x, y ∈ F

F = {0i | i ≥ 0} L = {0n1n |n ≥ 0}

F L F M
L |F |

15

We have already saw the essence of the following lemma:

Lemma

Let be a regular language over and be a DFA
such that recognizes . If are distinguishable, then

 where .

Let use this lemma to prove the theorem on the previous slide.

L Σ M (Q, Σ, δ, q0, A)
M L x, y ∈ Σ*

Ωx ≠ Ωy Ωw := ̂δ(q0, w)

Formalize our work so far …

16

Suppose is a fooling set for . If is finite then there is no DFA
that accepts with less than states.

Proof:
Let be the fooling set and let

be any DFA that accepts . Also Let . Then by
lemma for all . As such,

.

F L F M
L |F |

F = {w1, w2, …, wm}
M = (Q, Σ, δ, q0, A)
L qi = ∇wi = ̂δ(q0, xi)

qi ≠ qj i ≠ j

|Q | ≥ |{q1, . . . , qm} | = |{w1, . . . , wm} | = |A |

Proof of Theorem

17

Corollary: If has an infinite fooling set then is not regular.

Proof by contradiction

Let be an infinite sequence of strings that are pairwise
distinguishable and define for .

Assume a DFA for . Then by the previous
theorem, for all .

But is not bounded above. As such cannot be bounded above.

Therefore cannot be a deterministic finite automaton contradiction.

L F L

w1, w2, . . . ⊆ F
Fk := {w1, w2, …, wk} i ≥ 1

∃ M = (Q, Σ, δ, q0, A) L
|Q | > |Fk | k

k |Q |
M ⟹

Infinite Fooling Sets

18

Examples

19

Exercises with fooling sets
Example 1 - Σ = {0,1}

• L1 = {0n1n ∣ n ≥ 0}

20

Exercises with fooling sets
Example 2 - Σ = {0,1}

• L2 = {w ∈ Σ* ∣ #0(w) = #1(w)}

21

Exercises with fooling sets
Example 3 - Σ = {0,1}

• L3 = {w ∈ Σ* ∣ w = rev(w)}

22

Proving non-regularity: Closure
properties

23

Closure properties & non-regularity
Thought exercise

• We know that regular languages are closed under concatenation, union and
Kleene star.

• Fact: They are also closed under complementation and intersection.

• Suppose:

 or

• What can we say about

Ln = Lu □ Lr where □ ∈ { ∩ , ∪ , ∘ }

Ln = L̃u where (̃) ∈ {()*, ()}
Lu?

24

Example 1

• Recall

 and

• By now we know is non-regular. What about ?

• Which set is larger? Can we get from using a regular operation?

L1 = {0n1n ∣ n ≥ 0} L2 = {w ∈ Σ* ∣ #0(w) = #1(w)}

L1 L2

L1 L2

L1 = L2 ∩ {w ∣ w ∈ 0*1*}
= L2 ∩ L (0*1*)

25

Closure properties & non-regularity

Example 2

• Let

• Is regular or non-regular? Try proof-by-contradiction.

L3 := {ambn ∣ m ≥ 0, n ≥ 0, m ≠ n}

L3

26

Closure properties & non-regularity

General recipe

27

Closure properties & non-regularity

LR1

LR2

⋮

LRN

KNOWN

REGULAR

L?UNKNOWN

Apply regular
operations &

use their
closure

properties

LN

Known non-
regular

language

Myhill-Nerode Theorem
Towards the statement

• Recall that two strings are distinguishable relative to provided
there exists a distinguishing suffix where the DFA recognizes
and is the alphabet of .

• Define to be equivalent relative to (denoted) if there is no
distinguishing suffix for and . In other words, means that

• Then partitions into equivalence classes.

x, y L = L(M)
w ∈ Σ* M L

Σ M

x, y L x ∼L y
x y x ∼L y

∀w ∈ Σ* : xw ∈ L ⟺ yw ∈ L

∼L L = L(M)

28

Myhill-Nerode Theorem
Quick review - definitions

• What is an equivalence class?

• Let be an equivalence relation on a nonempty set . For each ,
the equivalence class of is the subset of consisting of all elements
that are equivalent to

• What is an equivalence relation?

• An equivalence relation is a binary relation that is reflexive, symmetric &
transitive.

∼ A a ∈ A
[a] a A
a

[a] := {x ∈ A ∣ x ∼ a}

29

Myhill-Nerode Theorem
Quick review - definitions

• Recall that given sets and ,

• A binary relation over sets and is a
subset of . A binary relation on
is a subset of .

• An equivalence relation on is a
binary relation that is reflexive,
symmetric & transitive.

X Y

X × Y := {(x, y) ∣ x ∈ X, y ∈ Y}
X Y

X × Y X
X × X

X

30

Example 1: Modulo arithmetic

We denote by (for positive) the
integers modulo .

Thus in , we have ,
, and so on.

Then is an equivalence relation.

ℤn n
n

ℤ3 1 ≡3 4
4 ≡3 7

≡3

Myhill-Nerode Theorem
Quick review - definitions

31

• Recall that given sets and ,

• A binary relation over sets and is a
subset of . A binary relation on
is a subset of .

• An equivalence relation on is a
binary relation that is reflexive,
symmetric & transitive.

X Y

X × Y := {(x, y) ∣ x ∈ X, y ∈ Y}
X Y

X × Y X
X × X

X

X = {a, b, c}

R =

(a, a),
(b, b),
(c, c),
(b, c),
(c, b)

⊆ X × X

Example 2:

Myhill-Nerode Theorem
Necessary and sufficient condition for regularity

• If two strings then is indistinguishable from in . The equivalence
relation partitions into equivalence classes.

A language is regular if and only if has a finite number of
equivalence classes. Furthermore, this number is equal to the number of states

in the minimal DFA accepting

Example: Let be the set of binary strings divisible by 3. Show that is
regular.

x ∼L y x y L
∼L L(M)

L = L(M) ∼L

M L .

L L

32

Myhill-Nerode Theorem
Example

Let be the set of binary strings divisible by 3. Show that is regular.

Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum
of the even bits.

• and are indistinguishable: Both or for all .

• By the same argument is indistinguishable from .

• Thus

L L

ε 0 εw, 0w ∈ L εw, 0w ∉ L w

11 ε,0

[0] = {ε,0,11,110,1001,1100,1111,…}

33

Myhill-Nerode Theorem
Example

Let be the set of binary strings divisible by 3. Show that is regular.

Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum
of the even bits.

• is distinguishable from since for any we have but
.

• Same holds true for — why?

• Thus

L L

1 [0] x ∈ [0] x ⋅ 1 ∉ L
1 ⋅ 1 ∈ L

100

[1] = {1,100,111,1010,…}

34

Myhill-Nerode Theorem
Example

Let be the set of binary strings divisible by 3. Show that is regular.

Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum
of the even bits.

• is distinguishable from and . For any we have but
. For any we have but .

• Same holds true for — why?

• Thus

• form a partition of under . Thus is regular.

L L

10 [0] [1] x ∈ [0] x ⋅ 0 ∈ L
10 ⋅ 0 ∉ L y ∈ [1] y ⋅ 1 ∈ L 10 ⋅ 1 ∉ L

101

[10] = {10,101,…}

[0], [1], [10] Σ* ∼L L
35

Next time

• This lecture was about some tools for
recognizing non-regular lanaguages

• Next week we will see the equivalent
of DFAs for context-free languages.

• Called Pushdown Automata

• Context sensitive languages &
Linear Bounded Automata (LBAs)
will not be covered

• See Sipser’s book

36

context free

regular

context sensitive

context free

Source: Kani Archive

