
All mistakes are my own! - Ivan Abraham (Fall 2024)

Non-regularity and fooling sets 
Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.



Introduce the next computability class

• So far, we have dealt with regular 
languages - if we bothered to 
name some as regular, are there 
some that aren’t regular? 

• Irregular? Non-regular? 

• Indeed, one goal of the first 
part of 374 is to introduce the 
computability classes - 
Chomsky's Hierarchy
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• Introduce non-regular languages

• An argument for existence
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context free

• Introduce non-regular languages

• An argument for existence

• A classic example of a non-regular 
language - a context-free language

• Methods for showing when a 
language is non-regular

• Fooling sets & closure properties 

• Myhill-Nerode Theorem

Lecture outline

3
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What languages are non-regular?
Are there non-regular languages to begin with?

• Recall Kleene’s theorem:

The classes of languages accepted by DFAs, NFAs, and regular 
expressions are the same. 
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What languages are non-regular?
Are there non-regular languages to begin with?

• Recall Kleene’s theorem:

The classes of languages accepted by DFAs, NFAs, and regular 
expressions are the same. 

• Question: Why should non-regular language exist? What if the above class 
(regular languages) are the only kind of languages?

4

Basic question : What is the cardinality/size of
an infinity

set and how does it compare
to the

cardinality of its power
set 2.



Non-regular languages
Existence of non-regular languages

• Integers can be counted (or put in 1-1 correspondence) - called countably 
infinite. 
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Non-regular languages
Existence of non-regular languages

• Integers can be counted (or put in 1-1 correspondence) - called countably 
infinite. 

• The real numbers are uncountable (c.f. Cantor’s diagonalization argument) — 
called uncountably infinite. 

• Similarly, while the class of regular languages is countably infinite, the set of all 
languages is uncountably infinite.

• In other words, there must exist languages that are not regular. 

• This isn’t a “proof,” but we can readily provide an example of a non-regular 
language
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Lemma:   is not regular.L1

6

L1 = {0n1n ∣ n ≥ 0} = {ϵ,01,0011,000111,…}

Question: Proof? 

Intuition: Any program that recognizes  seems to require counting the number 
of zeros in the input so that it can then compare it to the number of ones—this 
cannot be done with fixed memory for all .

L

n
How do we formalize intuition and come up with a proof?

A simple and canonical non-regular language



A simple and canonical non-regular language
Building intuition
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A simple and canonical non-regular language
Building intuition

• Can the two green 
colored states be the 
same?


• What happens if 
they are? 


• Suppose they are 
the same …

q0 qnqk

0000

00

00001111

001111

What state should DFA

be in after reading the
Suffic IIII ?



Proof by contradiction
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• Let ) where  is finite. M = (Q, {0,1}, δ, s, A) |Q |
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Proof by contradiction

10

• Suppose  is regular. Then there is a DFA  which recognizes  . L M L

• Let ) where  is finite.  Consider strings M = (Q, {0,1}, δ, s, A) |Q | = n

 ϵ,0,00,000,...0n

for a total of  strings. What states does  reach on the above strings? n + 1 M

• Let . By pigeon-hole principle  for some  . q0i = ̂δ(s,0i) q0i = q0 j 0 ≤ i < j ≤ n

• That is,  is in the same state after reading  and  where  . Then  
should accept  but then it will also accept  where .

M 0i 0 j i ≠ j M
0i1i 0 j1i i ≠ j

• This contradicts the fact that  is a DFA for . Thus, there is no DFA for .M L L
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• Fooling sets: Also called the method of distinguishing suffixes. To 
prove that  it is non-regular, find an infinite fooling set.L

• Closure properties: Use existing non-regular languages and regular 
languages to prove that some new language is non-regular.

• Pumping lemma: We will not cover it but it is sometimes an easier 
proof technique to apply, but not as general as the fooling set 
technique - there are many different pumping lemmas for different 
classes of languages.

Proving non-regularity: Methods

11

· Myhull-Nevode Theorem => requires exhaustine
case analysis.



Proving non-regularity: Fooling sets
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Fooling set method
Definitions: what is meant by distinguishable?

• Given a DFA  recognizing a language 
 defined over , we say two states 

 are equivalent if, for all  

M
L(M) Σ
p, q ∈ Q w ∈ Σ*

̂δ (p, w) ∈ A ⇔ ̂δ (q, w) ∈ A
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Definitions: what is meant by distinguishable?

• Given a DFA  recognizing a language 
 defined over , we say two states 

 are equivalent if, for all  

M
L(M) Σ
p, q ∈ Q w ∈ Σ*

̂δ (p, w) ∈ A ⇔ ̂δ (q, w) ∈ A

• We say two states  are 
distinguishable if  such that 
exactly one of  or  is in .

p, q ∈ Q
∃w ∈ Σ*

̂δ(p, w) ̂δ(q, w) A

13

q0

q1

q2

q3

q4

0

1 10

1

1
0 0

Source: Kani Archive
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Fooling set method
Definitions: what is meant by distinguishable?

• In light of the previous definitions, denote

Ωw := ̂δ (q0, w)
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Fooling set method
Definitions: what is meant by distinguishable?

• In light of the previous definitions, denote

Ωw := ̂δ (q0, w)
• We say two strings  are distinguishable relative to  if 

 and  are distinguishable. 
x, y ∈ Σ* L(M)

Ωx Ωy

• In other words, two strings  are distinguishable relative to 
 if  such that precisely one of  or  is in .

x, y ∈ Σ*
L(M) ∃w ∈ Σ* xw yw L(M)

14

O
-

either new &L(M) yoL(M)and

or U1@L(M) and gw - L(m)



Fooling sets
Definition

For a language  over , a set of strings  (could be infinite) is a fooling 
set or distinguishing set for , if every two distinct strings  are 
distinguishable.

L Σ F
L x, y ∈ F

Example: 

15

# is a set of strings from
* such that they are

↑
pairwise destinguishable
for ((or M).
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Fooling sets
Definition

For a language  over , a set of strings  (could be infinite) is a fooling 
set or distinguishing set for , if every two distinct strings  are 
distinguishable.

L Σ F
L x, y ∈ F

Example: 
 is a fooling set for the language F = {0i | i ≥ 0} L = {0n1n |n ≥ 0}

Theorem:
Suppose  is a fooling set for . If  is finite then there is no DFA  

that accepts  with less than  states.
F L F M

L |F |
15
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We have already saw the essence of the following lemma:

Lemma 

Let  be a regular language over  and  be a DFA  
such that  recognizes .  If   are distinguishable, then 

  where .

L Σ M (Q, Σ, δ, q0, A)
M L x, y ∈ Σ*

Ωx ≠ Ωy Ωw := ̂δ(q0, w)

Formalize our work so far …
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We have already saw the essence of the following lemma:

Lemma 

Let  be a regular language over  and  be a DFA  
such that  recognizes .  If   are distinguishable, then 

  where .

L Σ M (Q, Σ, δ, q0, A)
M L x, y ∈ Σ*

Ωx ≠ Ωy Ωw := ̂δ(q0, w)
Let use this lemma to prove the theorem on the previous slide. 

Formalize our work so far …
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Suppose  is a fooling set for . If  is finite then there is no DFA  
that accepts  with less than  states.

F L F M
L |F |

Proof:

Proof of Theorem
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F L F M
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Proof:
Let  be the fooling set and let F = {w1, w2, …, wm}
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Proof:
Let  be the fooling set and let F = {w1, w2, …, wm}

 M = (Q, Σ, δ, q0, A)
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Suppose  is a fooling set for . If  is finite then there is no DFA  
that accepts  with less than  states.

F L F M
L |F |

Proof:
Let  be the fooling set and let F = {w1, w2, …, wm}

 M = (Q, Σ, δ, q0, A)
be any DFA that accepts  . Also let  . Then by 
lemma  for all  . As such, 

L qi = Ωwi
= ̂δ(q0, xi)

qi ≠ qj i ≠ j

Proof of Theorem

17
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Suppose  is a fooling set for . If  is finite then there is no DFA  
that accepts  with less than  states.

F L F M
L |F |

Proof:
Let  be the fooling set and let F = {w1, w2, …, wm}

 M = (Q, Σ, δ, q0, A)
be any DFA that accepts  . Also let  . Then by 
lemma  for all  . As such, 

L qi = Ωwi
= ̂δ(q0, xi)

qi ≠ qj i ≠ j
|Q | ≥ |{q1, . . . , qm} | = |{w1, . . . , wm} | = |A |

Proof of Theorem

17
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Suppose  is a fooling set for . If  is finite then there is no DFA  
that accepts  with less than  states.

F L F M
L |F |

Proof:
Let  be the fooling set and let F = {w1, w2, …, wm}

 M = (Q, Σ, δ, q0, A)
be any DFA that accepts  . Also let  . Then by 
lemma  for all  . As such, 

L qi = Ωwi
= ̂δ(q0, xi)

qi ≠ qj i ≠ j
|Q | ≥ |{q1, . . . , qm} | = |{w1, . . . , wm} | = |A |

Proof of Theorem

17
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Corollary: If  has an infinite fooling set  then  is not regular.L F L

Proof by contradiction
Let  be an infinite sequence of strings that are pairwise 
distinguishable and define  for . 

w1, w2, . . . ⊆ F
Fk := {w1, w2, …, wk} i ≥ 1
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Corollary: If  has an infinite fooling set  then  is not regular.L F L

Proof by contradiction
Let  be an infinite sequence of strings that are pairwise 
distinguishable and define  for . 

w1, w2, . . . ⊆ F
Fk := {w1, w2, …, wk} i ≥ 1

Assume  a DFA for  . Then by the previous 
theorem,  for all . 

∃ M = (Q, Σ, δ, q0, A) L
|Q | > |Fk | k

Infinite Fooling Sets

18
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Corollary: If  has an infinite fooling set  then  is not regular.L F L

Proof by contradiction
Let  be an infinite sequence of strings that are pairwise 
distinguishable and define  for . 

w1, w2, . . . ⊆ F
Fk := {w1, w2, …, wk} i ≥ 1

Assume  a DFA for  . Then by the previous 
theorem,  for all . 

∃ M = (Q, Σ, δ, q0, A) L
|Q | > |Fk | k

But  is not bounded above. As such cannot be bounded above. k |Q |
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Corollary: If  has an infinite fooling set  then  is not regular.L F L

Proof by contradiction
Let  be an infinite sequence of strings that are pairwise 
distinguishable and define  for . 

w1, w2, . . . ⊆ F
Fk := {w1, w2, …, wk} i ≥ 1

Assume  a DFA for  . Then by the previous 
theorem,  for all . 

∃ M = (Q, Σ, δ, q0, A) L
|Q | > |Fk | k

But  is not bounded above. As such cannot be bounded above. k |Q |
Therefore  cannot be a DF(inite)A  contradiction.M ⟹

Infinite Fooling Sets
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Examples
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Exercises with fooling sets
Example 1 - Σ = {0,1}

• L1 = {0n1n ∣ n ≥ 0}

20

it is infinite in size
↑

F = 40"1 :203 , is afooling
set -

of and of should be pairwise
distinguishable
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Exercises with fooling sets
Example 2 - Σ = {0,1}

• L2 = {w ∈ Σ* ∣ #0(w) = #1(w)}

21

F= Lo" 1 :zoy.

Show that this works

Chave to finish argument precisely)



Exercises with fooling sets
Example 3 - Σ = {0,1}

• L3 = {w ∈ Σ* ∣ w = rev(w)}

22

= =201 1 12 03
·

-

What is a distinguishing suffic

for a pair in F?

=>Ja such but O'REL al OXEL

set x= 10i +j .



Proving non-regularity: Closure 
properties
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Closure properties & non-regularity
Thought exercise

• We know that regular languages are closed under concatenation, union and 
Kleene star. 
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Thought exercise
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• Fact: They are also closed under complementation and intersection. 

• Suppose:

 or Ln = Lu □ Lr where □ ∈ { ∩ , ∪ , ∘ }
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Closure properties & non-regularity
Thought exercise

• We know that regular languages are closed under concatenation, union and 
Kleene star. 

• Fact: They are also closed under complementation and intersection. 

• Suppose:

 or Ln = Lu □ Lr where □ ∈ { ∩ , ∪ , ∘ }

Ln = L̃u where (̃) ∈ {()*, ()}
• What can we say about Lu?

24



Example 1

• Recall 

 and L1 = {0n1n ∣ n ≥ 0} L2 = {w ∈ Σ* ∣ #0(w) = #1(w)}

25

Closure properties & non-regularity



Example 1

• Recall 

 and L1 = {0n1n ∣ n ≥ 0} L2 = {w ∈ Σ* ∣ #0(w) = #1(w)}

• By now we know  is non-regular. What about ? L1 L2

25

Closure properties & non-regularity
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Example 1

• Recall 

 and L1 = {0n1n ∣ n ≥ 0} L2 = {w ∈ Σ* ∣ #0(w) = #1(w)}

• By now we know  is non-regular. What about ? L1 L2

• Which set is larger? Can we get  from  using a regular operation? L1 L2

25

Closure properties & non-regularity



Example 2

• Let 

L3 := {ambn ∣ m ≥ 0, n ≥ 0, m ≠ n}

26

Closure properties & non-regularity
ProveBycontradiction

4 = 2ams/m=n]
Note to LI

↳ has order -> a before it
②incweles
a

a as

well .

↓oppose↳ is regular · ThenIs ,
is regular

↳ = [143
* Y

↳ leads to contradition



General recipe

27

Closure properties & non-regularity
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Myhill-Nerode Theorem
Towards the statement

• Recall that two strings  are distinguishable relative to  provided 
there exists a distinguishing suffix  where the DFA  recognizes  
and  is the alphabet of .

x, y L = L(M)
w ∈ Σ* M L

Σ M
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Myhill-Nerode Theorem
Towards the statement

• Recall that two strings  are distinguishable relative to  provided 
there exists a distinguishing suffix  where the DFA  recognizes  
and  is the alphabet of .

x, y L = L(M)
w ∈ Σ* M L

Σ M

• Define  to be equivalent relative to  (denoted  ) if there is no 
distinguishing suffix for  and . In other words,  means that

x, y L x ∼L y
x y x ∼L y
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Myhill-Nerode Theorem
Towards the statement

• Recall that two strings  are distinguishable relative to  provided 
there exists a distinguishing suffix  where the DFA  recognizes  
and  is the alphabet of .

x, y L = L(M)
w ∈ Σ* M L

Σ M

• Define  to be equivalent relative to  (denoted  ) if there is no 
distinguishing suffix for  and . In other words,  means that

x, y L x ∼L y
x y x ∼L y

∀w ∈ Σ* : xw ∈ L ⟺ yw ∈ L
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Myhill-Nerode Theorem
Towards the statement

• Recall that two strings  are distinguishable relative to  provided 
there exists a distinguishing suffix  where the DFA  recognizes  
and  is the alphabet of .

x, y L = L(M)
w ∈ Σ* M L

Σ M

• Define  to be equivalent relative to  (denoted  ) if there is no 
distinguishing suffix for  and . In other words,  means that

x, y L x ∼L y
x y x ∼L y

∀w ∈ Σ* : xw ∈ L ⟺ yw ∈ L

•  Then  partitions  into equivalence classes.∼L L = L(M)

28

easily
digestible
g

I
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Myhill-Nerode Theorem
Quick review - definitions

• What is an equivalence class? 

29



Myhill-Nerode Theorem
Quick review - definitions

• What is an equivalence class? 

• Let  be an equivalence relation on a nonempty set . For each , 
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Quick review - definitions

• What is an equivalence class? 

• Let  be an equivalence relation on a nonempty set . For each , 
the equivalence class  of  is the subset of  consisting of all elements 
that are equivalent to 

∼ A a ∈ A
[a] a A
a

[a] := {x ∈ A ∣ x ∼ a}
• What is an equivalence relation?

• An equivalence relation is a binary relation that is reflexive, symmetric & 
transitive.  

29
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• Recall that given sets  and , X Y

X × Y := {(x, y) ∣ x ∈ X, y ∈ Y}
• A binary relation over sets  and  is a 

subset of . A binary relation on  
is a subset of . 

X Y
X × Y X

X × X

• An equivalence relation on  is a 
binary relation that is reflexive, 
symmetric & transitive.  

X
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Example 1: Modulo arithmetic

We denote by  (for positive ) 
the integers modulo . 

ℤn n
n

Thus in , we have  , 
, and so on.
ℤ3 1 ≡3 4

4 ≡3 7
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• Recall that given sets  and , X Y

X × Y := {(x, y) ∣ x ∈ X, y ∈ Y}
• A binary relation over sets  and  is a 

subset of . A binary relation on  
is a subset of . 

X Y
X × Y X

X × X

• An equivalence relation on  is a 
binary relation that is reflexive, 
symmetric & transitive.  

X
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Example 1: Modulo arithmetic

We denote by  (for positive ) 
the integers modulo . 

ℤn n
n

Thus in , we have  , 
, and so on.
ℤ3 1 ≡3 4

4 ≡3 7
Then  is an equivalence 
relation. 

≡3

reflexive1E3/

symmetric =34743/

E
transitive

134
,
4737

= 1537
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• Recall that given sets  and , 





• A binary relation over sets  and  is a 
subset of . A binary relation on  
is a subset of . 


• An equivalence relation on  is a 
binary relation that is reflexive, 
symmetric & transitive.  

X Y

X × Y := {(x, y) ∣ x ∈ X, y ∈ Y}
X Y

X × Y X
X × X

X

X = {a, b, c}

R =

(a, a),
(b, b),
(c, c),
(b, c),
(c, b)

⊆ X × X

Example 2:

3 =



Myhill-Nerode Theorem
Necessary and sufficient condition for regularity

• If two strings  then  is indistinguishable from  in . The equivalence 
relation  partitions  into equivalence classes.

x ∼L y x y L
∼L L(M)
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Myhill-Nerode Theorem
Necessary and sufficient condition for regularity

• If two strings  then  is indistinguishable from  in . The equivalence 
relation  partitions  into equivalence classes.

x ∼L y x y L
∼L L(M)

A language  is regular if and only if  has a finite number of 
equivalence classes. Furthermore, this number is equal to the number of states 

in the minimal DFA  accepting 

L = L(M) ∼L

M L .

Example: Let  be the set of binary strings divisible by 3. Show that  is 
regular. 

L L
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Myhill-Nerode Theorem
Example
Let  be the set of binary strings divisible by 3. Show that  is regular. L L
Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum 
of the even bits. 

•  and  are indistinguishable: Both  or   for all .ε 0 εw, 0w ∈ L εw, 0w ∉ L w

• By the same argument  is indistinguishable from .11 ε,0

• Thus [0] = {ε,0,11,110,1001,1100,1111,…}

33
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Example
Let  be the set of binary strings divisible by 3. Show that  is regular. L L
Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum 
of the even bits. 

•  is distinguishable from  since for any  we have  but 
.

1 [0] x ∈ [0] x ⋅ 1 ∉ L
1 ⋅ 1 ∈ L

• Same holds true for  — why? 100

• Thus [1] = {1,100,111,1010,…}
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Myhill-Nerode Theorem
Example
Let  be the set of binary strings divisible by 3. Show that  is regular. L L
Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum 
of the even bits. 

•  is distinguishable from  and . For any  we have  but 
. For any  we have  but .

10 [0] [1] x ∈ [0] x ⋅ 0 ∈ L
10 ⋅ 0 ∉ L y ∈ [1] y ⋅ 1 ∈ L 10 ⋅ 1 ∉ L

• Same holds true for  — why? 101

• Thus [10] = {10,101,…}

•  form a partition of  under . Thus  is regular. [0], [1], [10] Σ* ∼L L
35
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Next time 

• This lecture was about some tools for 
recognizing non-regular lanaguages 


• Next week we will see the equivalent 
of DFAs for context-free languages. 


• Called Pushdown Automata


• Context sensitive languages & 
Linear Bounded Automata (LBAs) 
will not be covered 


• See Sipser’s book 
36
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