Alghrimms &

Non-regularity and fooling sets

Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.

& Models

ompusi

Flawchal(0

501

All mistakes are my own! - Ivan Abraham (Fall 2024)

Alghrinmis & Models of Computation

Alghminis & Models of Computation

of Computation

& Models & Models of of Compulation

Image by ChatGPT (probably collaborated with DALL-E)

Goal of lecture Introduce the next computability class

- So far, we have dealt with regular languages - if we bothered to name some as regular, are there some that aren't regular?
 - Irregular? Non-regular?
 - Indeed, one goal of the first part of 374 is to introduce the computability classes -*Chomsky's Hierarchy*

Goal of lecture Introduce the next computability class

- So far, we have dealt with regular languages - if we bothered to name some as regular, are there some that aren't regular?
 - Irregular? Non-regular?
 - Indeed, one goal of the first part of 374 is to introduce the computability classes -*Chomsky's Hierarchy*

Source: Kani Archive

Goal of lecture Introduce the next computability class

- So far, we have dealt with regular languages - if we bothered to name some as regular, are there some that aren't regular?
 - Irregular? Non-regular?
 - Indeed, one goal of the first part of 374 is to introduce the computability classes -*Chomsky's Hierarchy*

Source: Kani Archive

- Introduce non-regular languages
 - An argument for existence

Source: Kani Archive

- Introduce non-regular languages
 - An argument for existence
 - A classic example of a non-regular language - a context-free language

Source: Kani Archive

- Introduce non-regular languages
 - An argument for existence
 - A classic example of a non-regular language - a context-free language
 - Methods for showing when a language is non-regular

Source: Kani Archive

- Introduce non-regular languages
 - An argument for existence
 - A classic example of a non-regular language a context-free language
 - Methods for showing when a language is non-regular
 - Fooling sets & closure properties

Source: Kani Archive

- Introduce non-regular languages
 - An argument for existence
 - A classic example of a non-regular language a context-free language
 - Methods for showing when a language is non-regular
 - Fooling sets & closure properties
 - Myhill-Nerode Theorem

Source: Kani Archive

What languages are non-regular? Are there non-regular languages to begin with?

• Recall Kleene's theorem:

The classes of languages accepted by DFAs, NFAs, and regular expressions are the same. Λ

What languages are non-regular? Are there non-regular languages to begin with?

• Recall Kleene's theorem:

(regular languages) are the only kind of languages?

The classes of languages accepted by DFAs, NFAs, and regular expressions are the same.

• Question: Why should non-regular language exist? What if the above class

what is the cardinality/size of an infinito set and how does it compare to the cardinality of its power set?

infinite.

 $L = do^{n, p} | p \ge n 3$ $\Xi = do^{n, p} | E \ge n 3$

Integers can be counted (or put in 1-1 correspondence) - called *countably*

- Integers can be counted (or put in 1-1 correspondence) called countably infinite.
- The real numbers are uncountable (c.f. <u>Cantor's diagonalization argument</u>) called uncountably infinite.

- infinite.
- The real numbers are uncountable (c.f. <u>Cantor's diagonalization argument</u>) called *uncountably infinite*.
- languages is uncountably infinite.

• Similarly, while the class of regular languages is countably infinite, the set of all

- Integers can be counted (or put in 1-1 correspondence) called countably infinite.
- The real numbers are uncountable (c.f. <u>Cantor's diagonalization argument</u>) called uncountably infinite.
- Similarly, while the class of regular languages is countably infinite, the set of all languages is uncountably infinite.
 - In other words, there must exist languages that are not regular.

- Integers can be counted (or put in 1-1 correspondence) called countably infinite.
- The real numbers are uncountable (c.f. <u>Cantor's diagonalization argument</u>) called uncountably infinite.
- Similarly, while the class of regular languages is countably infinite, the set of all languages is uncountably infinite.
 - In other words, there must exist languages that are not regular.
 - This isn't a "proof," but we can readily provide an example of a non-regular language

A simple and canonical non-regular language $L_1 = \{0^n 1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \dots\}$

- **Lemma:** L_1 is not regular.
- **Question:** Proof?

cannot be done with fixed memory for all n.

How do we formalize intuition and come up with a proof?

- **Intuition:** Any program that recognizes L seems to require counting the number of zeros in the input so that it can then compare it to the number of ones — this

 Can the two green colored states be the same?

 Can the two green colored states be the same?

- Can the two green colored states be the same?
 - What happens if they are?
 - Suppose they are the same ...

 Can the two green colored states be the same?

- What happens if they are?
- Suppose they are the same ...

what state should DFA be in after reading the Λ Suffix 1111 ?

• Suppose L is regular. Then there is a DFA M which recognizes L.

• Suppose L is regular. Then there is a DFA M which recognizes L.

- Suppose L is regular. Then there is a DFA M which recognizes L.
- Let $M = (Q, \{0,1\}, \delta, s, A)$) where |Q| is finite.

- Suppose L is regular. Then there is a DFA M which recognizes L.
- Let $M = (Q, \{0,1\}, \delta, s, A)$) where |Q| = n is finite.

- Suppose L is regular. Then there is a DFA M which recognizes L.
- Let $M = (Q, \{0,1\}, \delta, s, A)$) where |Q| = n is finite. Consider strings $\epsilon, 0, 00, 000, ...0^{n}$

- Suppose L is regular. Then there is a DFA M which recognizes L.
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where Q = n is finite. Consider strings ϵ ,0,00,000,...0ⁿ

• Let $q_{0^i} = \hat{\delta}(s, 0^i)$. By pigeon-hole principle $q_{0^i} = q_{0^j}$ for some $0 \leq i < j \leq n$.

- Suppose L is regular. Then there is a DFA M which recognizes L.
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where Q = n is finite. Consider strings $\epsilon, 0, 00, 000, ...0^{n}$

- Let $q_{0i} = \hat{\delta}(s, 0^i)$. By pigeon-hole principle $q_{0i} = q_{0j}$ for some $0 \le i < j \le n$.
- That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$. Then M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$. $\implies M$ does up work Bel.

- Suppose L is regular. Then there is a DFA M which recognizes L.
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where Q = n is finite. Consider strings $\epsilon, 0, 00, 000, ...0^{n}$

- Let $q_{0i} = \hat{\delta}(s, 0^i)$. By pigeon-hole principle $q_{0i} = q_{0j}$ for some $0 \le i < j \le n$.
- That is, M is in the same state after reading 0^i and 0^j where $i \neq j$. Then M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$.
- This contradicts the fact that M is a DFA for L. Thus, there is no DFA for L.

Proving non-regularity: Methods

prove that L it is non-regular, find an infinite fooling set.

• Fooling sets: Also called the method of distinguishing suffixes. To

Proving non-regularity: Methods

- Fooling sets: Also called the method of distinguishing suffixes. To prove that L it is non-regular, find an infinite fooling set.
- Closure properties: Use existing non-regular languages and regular languages to prove that some new language is non-regular.

Proving non-regularity: Methods

- Fooling sets: Also called the method of distinguishing suffixes. To prove that L it is non-regular, find an infinite fooling set.
- Closure properties: Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma: We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique - there are many different pumping lemmas for different classes of languages.

Proving non-regularity: Fooling sets

Fooling set method **Definitions: what is meant by distinguishable?**

• Given a DFA *M* recognizing a language L(M) defined over Σ , we say two states $p,q \in Q$ are equivalent if, for all $w \in \Sigma^*$

 $\hat{\delta}(p,w) \in A \iff \hat{\delta}(q,w) \in A$

Fooling set method **Definitions: what is meant by distinguishable?**

• Given a DFA *M* recognizing a language L(M) defined over Σ , we say two states $p, q \in Q$ are equivalent if, for all $w \in \Sigma^*$

$$\hat{\delta}(p,w) \in A \iff \hat{\delta}(q,w) \in A$$

• We say two states $p, q \in Q$ are **distinguishable** if $\exists w \in \Sigma^*$ such that exactly one of $\hat{\delta}(p, w)$ or $\hat{\delta}(q, w)$ is in A.

extended transition functions.

me statel.

9, 90 are distinguish because 9,0 G A

Source: Kani Archive

 q_3

Fooling set method **Definitions: what is meant by distinguishable?**

• In light of the previous definitions, denote

 $\Omega_w := \hat{\delta}(q_0, w)$

Fooling set method **Definitions: what is meant by distinguishable?**

- In light of the previous definitions, denote
- Ω_{χ} and Ω_{χ} are distinguishable.

Fooling set method **Definitions: what is meant by distinguishable?**

• In light of the previous definitions, denote

- We say two strings $x, y \in \Sigma^*$ are **distinguishable** relative to L(M) if Ω_x and Ω_v are distinguishable.
- In other words, two strings $x, y \in \Sigma^*$ are **distinguishable** relative to L(M) if $\exists w \in \Sigma^*$ such that precisely one of xw or yw is in L(M).
 - either xw ∈ L(M) and yw € Z(M) or no $\notin L(M)$ and $\forall w \in L(M)$

 $\Omega_w := \hat{\delta}(q_0, w)$

For a language L over Σ , a set of strings F (could be infinite) is a fooling set or distinguishing set for L, if every two distinct strings $x, y \in F$ are distinguishable.

Example:

Fis a set of storings from z* such that they are parroise clistingurshable for L (or M).

For a language L over Σ , a set of strings F (could be infinite) is a fooling set or distinguishing set for L, if every two distinct strings $x, y \in F$ are distinguishable. $\mathcal{E}_{\mathcal{A}} \circ \mathcal{O}_{\mathcal{A}} \circ \mathcal{O}_{\mathcal{A}} \circ \mathcal{O}_{\mathcal{A}}$

Example: $F = \{0^i | i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n | n \ge 0\}$

For a language L over Σ , a set of strings F (could be infinite) is a fooling set or distinguishing set for L, if every two distinct strings $x, y \in F$ are distinguishable.

Example:

 $F = \{0^i | i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n | n \ge 0\}$

Theorem:

distinguishable.

Example:

Theorem:

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

For a language L over Σ , a set of strings F (could be infinite) is a fooling set or distinguishing set for L, if every two distinct strings $x, y \in F$ are

 $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}$

Formalize our work so far ...

We have already saw the essence of the following lemma:

Lemma

 $\Omega_x \neq \Omega_v$ where $\Omega_w := \hat{\delta}(q_0, w)$.

Let L be a regular language over Σ and M be a DFA $(Q, \Sigma, \delta, q_0, A)$ such that M recognizes L. If $x, y \in \Sigma^*$ are distinguishable, then

Formalize our work so far ...

We have already saw the essence of the following lemma:

Lemma

 $\Omega_x \neq \Omega_v$ where $\Omega_w := \hat{\delta}(q_0, w)$.

Let use this lemma to prove the theorem on the previous slide.

- Let L be a regular language over Σ and M be a DFA $(Q, \Sigma, \delta, q_0, A)$ such that M recognizes L. If $x, y \in \Sigma^*$ are distinguishable, then

Proof of Theorem Suppose *F* is a fooling set for *L*. If *F* is finite then there is no DFA *M* that accepts L with less than |F| states.

Proof:

Proof: Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set and let

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof: Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set and let $M = (Q, \Sigma, \delta, q_0, A)$

- Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Proof: Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set and let

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

- $M = (Q, \Sigma, \delta, q_0, A)$ be any DFA that accepts L. Also let $q_i = \Omega_{w_i} = \hat{\delta}(q_0, q)$. Then by lemma $q_i \neq q_j$ for all $i \neq j$. As such,

Proof: Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set and let $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |\mathbf{k}|$

- Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.
- $M = (Q, \Sigma, \delta, q_0, A)$ be any DFA that accepts L . Also let $q_i=\Omega_{w_i}=\hat{\delta}(q_0,x_i)$. Then by lemma $q_i\neq q_j$ for all $i\neq j$. As such,

Proof: Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set and let

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

- $M = (Q, \Sigma, \delta, q_0, A)$
- be any DFA that accepts L . Also let $q_i=\Omega_{_{W_i}}=\hat{\delta}(q_0,x_i)$. Then by lemma $q_i\neq q_j$ for all $i\neq j$. As such,
 - $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |a|$

Corollary: If L has an infinite fooling set F then L is not regular.

Corollary: If *L* has an infinite fooling set *F* then *L* is not regular.

Proof by contradiction

Corollary: If *L* has an infinite fooling set *F* then *L* is not regular.

Proof by contradiction

distinguishable and define $F_k := \{w_1, w_2, \dots, w_k\}$ for $i \ge 1$.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise*

Corollary: If L has an infinite fooli

Proof by contradiction

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise* distinguishable and define $F_k := \{w_1, w_2, \ldots, w_k\}$ for $i \ge 1$. Assume $\exists M = (Q, \Sigma, \delta, q_0, A)$ a DFA for L. Then by the previous theorem, $|Q| > |F_k|$ for all k.

$$F_{i} = \mathcal{A} \omega_{i} \mathcal{A}$$

$$F_{2} = \mathcal{A} \omega_{i} \mathcal{A} \mathcal{A} \mathcal{A}$$
ing set F then L is not regular.

Corollary: If L has an infinite fooling set F then L is not regular.

Proof by contradiction

distinguishable and define $F_k := \{w_1, w_2, \dots, w_k\}$ for $i \ge 1$.

Assume $\exists M = (Q, \Sigma, \delta, q_0, A)$ a DFA for L. Then by the previous theorem, $|Q| > |F_k|$ for all k.

But k is not bounded above. As such |Q| cannot be bounded above.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise*

Corollary: If L has an infinite fooling set F then L is not regular.

Proof by contradiction

distinguishable and define $F_k := \{w_1, w_2, \dots, w_k\}$ for $i \ge 1$.

- Assume $\exists M = (Q, \Sigma, \delta, q_0, A)$ a DFA for L. Then by the previous theorem, $|Q| > |F_k|$ for all k.
- But k is not bounded above. As such |Q| cannot be bounded above. Therefore M cannot be a DF(inite)A \implies contradiction.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise*

Examples

Exercises with fooling sets Example 1 - $\Sigma = \{0,1\}$

• $L_1 = \{0^n 1^n \mid n \ge 0\}$

At is infinite in size $F = do' | c \ge d , is a fooling cel.$ d'and oi choold be pairwise distinguishable d'1ⁱ EL 0ⁱ1ⁱ EL, jti

Exercises with fooling sets $F = d 0^{i} \quad | i \geq 0^{i}$ **Example 2 -** $\Sigma = \{0,1\}$ Show had this wocks • $L_2 = \{ w \in \Sigma^* \mid \#_0(w) = \#_1(w) \}$ (have to finish argument precisely)

Exercises with fooling sets Example 3 - $\Sigma = \{0,1\}$

• $L_3 = \{ w \in \Sigma^* \mid w = rev(w) \}$

 $F = \frac{1}{2} 0^{i} (i \geq 0)^{i}$ What is a distinguishing suffix for a pair in F? ⇒ 3 x soch trut d'x GL aul oix €L. set $\chi = 10^{i}$ $i \neq s$.

Proving non-regularity: Closure properties

Kleene star.

We know that regular languages are closed under concatenation, union and

- We know that regular languages are closed under concatenation, union and Kleene star.
 - Fact: They are also closed under complementation and intersection.

- We know that regular languages are closed under concatenation, union and Kleene star.
 - Fact: They are also closed under complementation and intersection.
- se: $L_n = L_u \Box L_r \text{ where } \Box \in \{ \cap, \cup, \circ \} \text{ or }$ • Suppose:

- We know that regular languages are closed under concatenation, union and Kleene star.
 - Fact: They are also closed under complementation and intersection.
- Suppose:

$$L_n = L_u \square L_r \quad \text{where} \quad \square \in \{ \cap, \cup, \circ \} \text{ or}$$
$$L_n = \widetilde{L_u} \quad \text{where} \quad \widetilde{()} \in \{ ()^*, \overline{()} \}$$

- We know that regular languages are closed under concatenation, union and Kleene star.
 - Fact: They are also closed under complementation and intersection.
- Suppose:

$$L_n = L_u \square L_r \quad \text{where} \quad \square \in \{ \cap, \cup, \circ \} \text{ or}$$
$$L_n = \widetilde{L_u} \quad \text{where} \quad \widetilde{()} \in \{ ()^*, \overline{()} \}$$

• What can we say about L_u ?

Recall

 $L_1 = \{0^n 1^n \mid n \ge 0\}$ and $L_2 = \{w \in \Sigma^* \mid \#_0(w) = \#_1(w)\}$

- 7 canonical example Recall
- By now we know L_1 is non-regular. What about L_2 ?

 $L_1 = \{0^n 1^n \mid n \ge 0\} \text{ and } L_2 = \{w \in \Sigma^* \mid \#_0(w) = \#_1(w)\}$

4 = 12 N L O*1, regular 9 N Language -

Recall

- By now we know L_1 is non-regular. What about L_2 ?
- Which set is larger? Can we get L_1 from L_2 using a regular operation?

 $L_1 = \{0^n 1^n \mid n \ge 0\}$ and $L_2 = \{w \in \Sigma^* \mid \#_0(w) = \#_1(w)\}$

• Let

Prove las contradiction $4 = 2a^{n}b^{n}|m=ng$ Note $L_3 \neq L_1$ Shas order $\rightarrow a before n$. $L_3 := \{a^m b^n \mid m \ge 0, n \ge 0, m \ne n\} \qquad \text{includes b} \\ \text{before a es}$ vell. Juppose 45 is regular. Then 13, is regular. $2_1 = L_3 \Pi \left(a^* b^* \right)$ () leads to contradiction

Closure properties & non-regularity General recipe

Myhill-Nerode Theorem Towards the statement

and Σ is the alphabet of M.

• Recall that two strings x, y are distinguishable relative to L = L(M) provided there exists a distinguishing suffix $w \in \Sigma^*$ where the DFA M recognizes L

Myhill-Nerode Theorem Towards the statement

- Define x, y to be equivalent relative to L (denoted $x \sim_L y$) if there is no distinguishing suffix for x and y. In other words, $x \sim_{I} y$ means that

mathematicianc like to be precise, distinguishability is always with respect to a M/L

• Recall that two strings x, y are distinguishable relative to L = L(M) provided there exists a distinguishing suffix $w \in \Sigma^*$ where the DFA M recognizes L and Σ is the alphabet of M. \longrightarrow okay to read as if would not there.

Myhill-Nerode Theorem Towards the statement

- Recall that two strings x, y are distinguishable relative to L = L(M) provided there exists a distinguishing suffix $w \in \Sigma^*$ where the DFA M recognizes L and Σ is the alphabet of M.
- Define *x*, *y* to be equivalent relative to *L* (denoted $x \sim_L y$) if there is no distinguishing suffix for *x* and *y*. In other words, $x \sim_L y$ means that
 - $\forall w \in \Sigma^* : xw \in L \Longleftrightarrow yw \in L$

Myhill-Nerode Theorem Towards the statement

- and Σ is the alphabet of M.
- Define x, y to be equivalent relative to L (denoted $x \sim_L y$) if there is no distinguishing suffix for x and y. In other words, $x \sim_L y$ means that

Then \sim_L partitions L = L(M) into equivalence classes.

• Recall that two strings x, y are distinguishable relative to L = L(M) provided there exists a distinguishing suffix $w \in \Sigma^*$ where the DFA M recognizes L

easile

• What is an equivalence class?

- What is an equivalence class?
 - that are equivalent to a

 $[a] := \{x \in A \mid x \sim a\}$

• Let \sim be an *equivalence relation* on a nonempty set A. For each $a \in A$, the equivalence class [a] of a is the subset of A consisting of all elements

- What is an equivalence class?
 - that are equivalent to a
- What is an equivalence relation?

• Let \sim be an *equivalence relation* on a nonempty set A. For each $a \in A$, the equivalence class [a] of a is the subset of A consisting of all elements

 $[a] := \{ x \in A \mid x \sim a \}$

- What is an equivalence class?
 - Let \sim be an *equivalence relation* on a nonempty set A. For each $a \in A$, the equivalence class [a] of a is the subset of A consisting of all elements that are equivalent to a
- What is an equivalence relation?
- $[a] := \left\{ x \in A \mid x \sim a \right\}$ $\mathcal{X} \land \mathcal{X} \to \mathcal{Y} \Rightarrow \mathcal{Y} \land \mathcal{A}$ • An equivalence relation is a binary relation that is reflexive, symmetric & transitive.

arb one brc => arc

• Recall that given sets X and Y,

 $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$

- Recall that given sets X and Y, $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A *binary relation* over sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.

- Recall that given sets X and Y, $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A binary relation over sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An equivalence relation on X is a binary relation that is reflexive, symmetric & transitive.

- Recall that given sets X and Y, $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A binary relation over sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An equivalence relation on X is a binary relation that is reflexive, symmetric & transitive.

Example 1: Modulo arithmetic

- Recall that given sets X and Y, $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A binary relation over sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An equivalence relation on X is a binary relation that is reflexive, symmetric & transitive.

Example 1: Modulo arithmetic We denote by \mathbb{Z}_n (for positive *n*) the integers modulo *n*.

2 = 5**Myhill-Nerode Theorem** 5=38 **Quick review - definitions** Example 1: Modulo arithmetic • Recall that given sets X and Y, We denote by \mathbb{Z}_n (for positive *n*) $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$ the integers modulo *n*. Thus in \mathbb{Z}_3 , we have $1 \equiv_3 4$, • A *binary relation* over sets X and Y is a $4 \equiv_3 7$, and so on.

- subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An equivalence relation on X is a binary relation that is reflexive, symmetric & transitive.

- Recall that given sets X and Y, $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A *binary relation* over sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

- Recall that given sets X and Y, $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A binary relation over sets X and Y is a subset of $X \times Y$. A binary relation on Xis a subset of $X \times X$.
- An equivalence relation on X is a binary relation that is reflexive, symmetric & transitive.

Myhill-Nerode Theorem Necessary and sufficient condition for regularity

relation \sim_L partitions L(M) into equivalence classes. "Divide into non-Intersecting subsets such that their conton comprises the whole "

• If two strings $x \sim_L y$ then x is indistinguishable from y in L. The equivalence

Myhill-Nerode Theorem Necessary and sufficient condition for regularity

• If two strings $x \sim_L y$ then x is indistinguishable from y in L. The equivalence relation \sim_L partitions L(M) into equivalence classes.

A language L = L(M) is regular if and only if \sim_L has a finite number of equivalence classes. Furthermore, this number is equal to the number of states in the minimal DFA M accepting L.

Myhill-Nerode Theorem Necessary and sufficient condition for regularity

• If two strings $x \sim_L y$ then x is indistinguishable from y in L. The equivalence relation \sim_L partitions L(M) into equivalence classes.

Example: Let L be the set of binary strings divisible by 3. Show that L is regular.

- A language L = L(M) is regular if and only if \sim_L has a finite number of equivalence classes. Furthermore, this number is equal to the number of states in the minimal DFA M accepting L.

Let L be the set of binary strings divisible by 3. Show that L is regular.

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

Let L be the set of binary strings divisible by 3. Show that L is regular.

of the even bits.

• ε and 0 are indistinguishable: Both εw , $0w \in L$ or εw , $0w \notin L$ for all w.

- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Let L be the set of binary strings divisible by 3. Show that L is regular.

- ε and 0 are indistinguishable: Both εw , $0w \in L$ or εw , $0w \notin L$ for all w.
 - By the same argument 11 is indistinguishable from ε ,0.

- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Let L be the set of binary strings divisible by 3. Show that L is regular.

of the even bits.

 ε and 0 are indistinguishable: Both a

- By the same argument 11 is indis
- Thus $[0] = \{\varepsilon, 0, 11, 110, 1001, 1$

- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

$$\varepsilon w \ 0w \in L \text{ or } \varepsilon w, 0w \notin L \text{ for all } w.$$

stinguishable from $\varepsilon, 0.$
 $equilibrium equivalence class}$
 $100,1111,... \} \longrightarrow of numbers exactdrivents by three$

Let L be the set of binary strings divisible by 3. Show that L is regular.

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

Let L be the set of binary strings divisible by 3. Show that L is regular.

of the even bits.

• 1 is distinguishable from [0] since for any $x \in [0]$ we have $x \cdot 1 \notin L$ but $1 \cdot 1 \in L$.

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

Let L be the set of binary strings divisible by 3. Show that L is regular.

- 1 is distinguishable from [0] since for any $x \in [0]$ we have $x \cdot 1 \notin L$ but $1 \cdot 1 \in L$.
 - Same holds true for 100 why?

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

Let L be the set of binary strings divisible by 3. Show that L is regular.

of the even bits.

- $1 \cdot 1 \in L$.
 - Same holds true for 100 why?
 - Thus $[1] = \{1, 100, 111, 1010, ...\}$

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

• 1 is distinguishable from [0] since for any $x \in [0]$ we have $x \cdot 1 \notin L$ but

equivalence class of numbers learning remainder one on division by 3.

Let L be the set of binary strings divisible by 3. Show that L is regular.

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

Let L be the set of binary strings divisible by 3. Show that L is regular.

of the even bits.

• 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.

- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Let L be the set of binary strings divisible by 3. Show that L is regular.

- 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.
 - Same holds true for 101 why?

- Hint: A binary string is divisible by 3 if the sum of the odd bits equal the sum

Let L be the set of binary strings divisible by 3. Show that L is regular.

of the even bits.

- 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.
 - Same holds true for 101 why?
 - Thus $[10] = \{10, 101, ...\}$

- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Equivalence class of numbers learng remainder 2 on chusion by 3.

Let L be the set of binary strings divisible by 3. Show that L is regular.

- 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.
 - Same holds true for 101 why? There are no more classes to consider! Remander is 0,10,2.
 - Thus $[10] = \{10, 101, ...\}$
 - [0], [1], [10] form a partition of Σ^* under \sim_L . Thus *L* is regular.

- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Next time

- This lecture was about some tools for recognizing non-regular lanaguages
- Next week we will see the equivalent of DFAs for *context-free* languages.
 - Called Pushdown Automata
 - Context sensitive languages & Linear Bounded Automata (LBAs) will not be covered
 - See Sipser's book

Source: Kani Archive

Next time

- This lecture was about some tools for recognizing non-regular lanaguages
- Next week we will see the equivalent of DFAs for *context-free* languages.
 - Called Pushdown Automata
 - Context sensitive languages & Linear Bounded Automata (LBAs) will not be covered
 - See Sipser's book

Source: Kani Archive