All mistakes are my own! - Ivan Abraham (Fall 2024)

Alghrinmis & Models of Computation

Alghmnls & Models of Compuliation

Non-regularity and fooling sets

Alghemnms Computation

& Models & Models of of Compulation

Image by ChatGPT (probably collaborated with DALL-E)

Alghrimms 8

Sides based on material by Profs. Kani, Erickson, Chekuri, et. al.

& Models

Compust

Flawchal(

 501

- So far, we have dealt with regular languages - if we bothered to name some as **regular**, are there some that *aren't regular*?
	- Irregular? Non-regular?
	- Indeed, one goal of the first part of 374 is to introduce the computability classes - *Chomsky's Hierarchy*

Introduce the next computability class Goal of lecture

- So far, we have dealt with regular languages - if we bothered to name some as **regular**, are there some that *aren't regular*?
	- Irregular? Non-regular?
	- Indeed, one goal of the first part of 374 is to introduce the computability classes - *Chomsky's Hierarchy*

Introduce the next computability class Goal of lecture

Source: Kani Archive

- So far, we have dealt with regular languages - if we bothered to name some as **regular**, are there some that *aren't regular*?
	- Irregular? Non-regular?
	- Indeed, one goal of the first part of 374 is to introduce the computability classes - *Chomsky's Hierarchy*

Introduce the next computability class Goal of lecture

Source: Kani Archive

- Introduce non-regular languages
	- An argument for existence

Source: Kani Archive

- Introduce non-regular languages
	- An argument for existence
	- A classic example of a non-regular language - a context-free language

Source: Kani Archive

- Introduce non-regular languages
	- An argument for existence
	- A classic example of a non-regular language - a context-free language
	- Methods for showing when a language is non-regular

Source: Kani Archive

- Introduce non-regular languages
	- An argument for existence
	- A classic example of a non-regular language - a context-free language
	- Methods for showing when a language is non-regular
		- Fooling sets & closure properties

Source: Kani Archive

- Introduce non-regular languages
	- An argument for existence
	- A classic example of a non-regular language - a context-free language
	- Methods for showing when a language is non-regular
		- Fooling sets & closure properties
		- Myhill-Nerode Theorem

Source: Kani Archive

What languages are non-regular? Are there non-regular languages to begin with?

The classes of languages accepted by DFAs, NFAs, and regular expressions are the same. represented by ।
र

• Recall Kleene's theorem:

What languages are non-regular? Are there non-regular languages to begin with?

• Recall Kleene's theorem:

The classes of languages accepted by DFAs, NFAs, and regular expressions are the same.

• **Question**: Why should non-regular language exist? What if the above class

(regular languages) are the *only* kind of languages?

Basic question : What is the cardinality/size of an infinity set and how does it compare to the cardinality of its power set 2.

 $L=20^{n}$ $P \begin{matrix} PZ & n \\ Q & n \end{matrix}$ $\leq n$)
 $\leq +0.13$ \leq * &

• Integers can be counted (or put in 1-1 correspondence) - called *countably*

infinite.

- Integers can be counted (or put in 1-1 correspondence) called *countably infinite.*
- The real numbers are uncountable (c.f. *Cantor's diagonalization argument)* called *uncountably infinite.*

- *infinite.*
- The real numbers are uncountable (c.f. *Cantor's diagonalization argument)* called *uncountably infinite.*
- languages is uncountably infinite.

• Similarly, while the class of regular languages is countably infinite, the set of all

- Integers can be counted (or put in 1-1 correspondence) called *countably infinite.*
- The real numbers are uncountable (c.f. *Cantor's diagonalization argument)* called *uncountably infinite.*
- Similarly, while the class of regular languages is countably infinite, the set of all languages is uncountably infinite.
	- In other words, there must exist languages that are not regular.

- Integers can be counted (or put in 1-1 correspondence) called *countably infinite.*
- The real numbers are uncountable (c.f. *Cantor's diagonalization argument)* called *uncountably infinite.*
- Similarly, while the class of regular languages is countably infinite, the set of all languages is uncountably infinite.
	- In other words, there must exist languages that are not regular.
	- This isn't a "proof," but we can readily provide an example of a non-regular language

-
- **Lemma:** L_1 is not regular.
- **Question:** Proof?

cannot be done with fixed memory for all *n*.

- **Intuition:** Any program that recognizes L seems to require counting the number of zeros in the input so that it can then compare it to the number of ones—*this*
	-

$L_1 = \{0^n1^n \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \dots\}$ **A simple and canonical non-regular language**

How do we formalize intuition and come up with a proof?

• Can the two green colored states be the same?

• Can the two green colored states be the same?

- Can the two green colored states be the same?
	- What happens if they are?
	- Suppose they are the same …

• Can the two green colored states be the same?

What state should DFA be in after reading the $SuffixNIII?$

- What happens if they are?
- Suppose they are the same …

• Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .

• Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .

- Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where $|Q|$ is finite.

- Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where $|Q| = n$ is finite.

- Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where $|Q| = n$ is finite. Consider strings *ϵ*,0,00,000,...0*ⁿ*

- Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where $|Q| = n$ is finite. Consider strings *ϵ*,0,00,000,...0*ⁿ*

• Let $q_{0^i} = \delta(s, 0^i)$. By pigeon-hole principle $q_{0^i} = q_{0^j}$ for some $0 \leq i < j \leq n$. ̂ *δ*(*s*,0*ⁱ q*₀*i* g _{*j*} g _{*j*} g _{*j*} g _{*j*} g _{*j*} g ₀*i* f on the above strings?
 i \leq *j* \leq *n*

- Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where $|Q| = n$ is finite. Consider strings *ϵ*,0,00,000,...0*ⁿ*

- Let $q_{0^i} = \delta(s, 0^i)$. By pigeon-hole principle $q_{0^i} = q_{0^j}$ for some $0 \le i < j \le n$. ̂ *δ*(*s*,0*ⁱ*). By pigeon-hole principle $q_{0^i} = q_{0^j}$ for some $0 \le i < j \le n$
- That is, M is in the same state after reading 0^i and 0^j where $i \neq j$. Then M should accept $0'1'$ but then it will also accept $0'1'$ where $i \neq j$. $0ⁱ1ⁱ$ but then it will also accept $0^j1ⁱ$ where $i \neq j$. \Rightarrow M does u work foll.

- Suppose *L* is regular. Then there is a DFA *M* which recognizes *L* .
- Let $M = (Q, \{0,1\}, \delta, s, A)$ where $|Q| = n$ is finite. Consider strings *ϵ*,0,00,000,...0*ⁿ*

- Let $q_{0^i} = \delta(s, 0^i)$. By pigeon-hole principle $q_{0^i} = q_{0^j}$ for some $0 \le i < j \le n$. ̂ *δ*(*s*,0*ⁱ*). By pigeon-hole principle $q_{0^i} = q_{0^j}$ for some $0 \le i < j \le n$
- That is, M is in the same state after reading 0^i and 0^j where $i \neq j$. Then M should accept $0'1'$ but then it will also accept $0'1'$ where $i \neq j$. $0ⁱ1ⁱ$ but then it will also accept $0^j1ⁱ$ where $i \neq j$
- This contradicts the fact that *M* is a DFA for *L*. Thus, there is no DFA for *L*.

prove that *L* it is non-regular, find an infinite fooling set.

• Fooling sets: Also called the method of distinguishing suffixes. To

Proving non-regularity: Methods

- Fooling sets: Also called the method of distinguishing suffixes. To prove that *L* it is non-regular, find an infinite fooling set.
- Closure properties: Use existing non-regular languages and regular languages to prove that some new language is non-regular.

Proving non-regularity: Methods

Proving non-regularity: Methods

- Fooling sets: Also called the method of distinguishing suffixes. To prove that *L* it is non-regular, find an infinite fooling set.
- Closure properties: Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma: We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique - there are many different pumping lemmas for different classes of languages. as the tooling set
glemmas for diffe
ese analysis.

Proving non-regularity: Fooling sets

Fooling set method Definitions: what is meant by distinguishable?

• Given a DFA M recognizing a language $L(M)$ defined over Σ , we say two states $p, q \in Q$ are equivalent if, for all $w \in \Sigma^*$

 $\delta(p, w) \in A \Leftrightarrow \delta(q, w) \in A$

Fooling set method Definitions: what is meant by distinguishable?

• Given a DFA M recognizing a language $L(M)$ defined over Σ , we say two states $p, q \in Q$ are equivalent if, for all $w \in \Sigma^*$

$$
\hat{\delta}(p, w) \in A \Leftrightarrow \hat{\delta}(q, w) \in
$$

• We say two states $p, q \in Q$ are distinguishable if $\exists w \in \sum^*$ such that e *xactly* one of $\delta(p, w)$ or $\delta(q, w)$ is in A . ̂ ̂ $g,g\in\mathcal{Q}$ are
 $\exists w\in\Sigma^*$ su
 w) or $\hat{\delta}(q,w)$
 $\sum_{\mathbf{w}}$ istinguishable if $\exists w\in \Sigma^*$ su
xactly one of $\hat{\delta}(p,w)$ or $\hat{\delta}(q,w)$
extended transition

9 , % are distinguishele because 9,0 G A

 \equiv *A*

Source: Kani Archive

↓ & functions .

are States:

Fooling set method Definitions: what is meant by distinguishable?

• In light of the previous definitions, denote

 $\Omega_w := \delta(q_0, w)$
Fooling set method Definitions: what is meant by distinguishable?

- In light of the previous definitions, denote
- We say two strings $x, y \in \Sigma^*$ are **distinguishable** retative to $L(M)$ if $\boldsymbol{\Omega}_{\chi}$ and $\boldsymbol{\Omega}_{\chi}$ are distinguishable. $\Omega_w := \delta(q_0, w)$ de
	- $\Omega_w := \delta(q_0, w)$

Fooling set method Definitions: what is meant by distinguishable?

- In light of the previous definitions, denote
	- $\Omega_w := \delta(q_0, w)$
- We say two strings $x, y \in \Sigma^*$ are **distinguishable** relative to $L(M)$ if $\boldsymbol{\Omega}_{\chi}$ and $\boldsymbol{\Omega}_{\chi}$ are distinguishable.
- In other words, two strings $x, y \in \Sigma^*$ are **distinguishable** relative to if $\exists w \in \Sigma^*$ such that precisely one of xw or yw is in $L(M)$. *x*, *y* ∈ Σ* $L(M)$ if $(\exists w) \in \Sigma^*$ such that precisely one of xw or yw is in $L(M)$ two strings $x, y \in \Sigma^*$ are
 Ω_y are distinguishable.

words, two strings $x, y \in$
 $\exists w \in \Sigma^*$ such that pred
	- or $\pi \omega \notin L(M)$ and $\omega \omega \in L(M)$ either $x\omega \in L(M)$ and $ywE^{\omega}(M)$
		-

For a language L over Σ , a set of strings F (could be infinite) is a fooling s et or distinguishing set for L , if every two distinct strings $x, y \in F$ are distinguishable.

Example:

F is a set of strungs from
E^{*} such that they are ↑ pairwise destinguishable a set of stru
such that the
fou (cr M).

For a language L over Σ , a set of strings F (could be infinite) is a fooling s et or distinguishing set for L , if every two distinct strings $x, y \in F$ are distinguishable. $\mathcal{L}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$, 0)
) 00 ,..., $\mathcal{O}^{\mathcal{A}}$ **Fooling sets**

Definition

For a language L over Σ , a set of strings F (could be infinite) is a foolin-

listinguishable.
 \mathcal{E} and \mathcal{E} are \mathcal{E} are \mathcal{E} are \mathcal{E} are \mathcal{E} are \mathcal{E} are \math

Example: $F = \{0^i | i \ge 0\}$ is a fooling set for the language $L = \{0^n1^n | n \ge 0\}$ ↑

For a language L over Σ , a set of strings F (could be infinite) is a fooling s et or distinguishing set for L , if every two distinct strings $x, y \in F$ are distinguishable.

Example:

 $F = \{0^i | i \geq 0\}$ is a fooling set for the language $L = \{0^n 1^n | n \geq 0\}$

Theorem:

 s et or distinguishing set for L , if every two distinct strings $x, y \in F$ are distinguishable.

Example:

listingu
Examp
Theore

 $F = \{0^i | i \geq 0\}$ is a fooling set for the language $L = \{0^n 1^n | n \geq 0\}$ A

Theorem:

Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

For a language L over Σ , a set of strings F (could be infinite) is a fooling

Lemma

Let L be a regular language over Σ and M be a DFA $(Q, \Sigma, \delta, q_0, A)$ such that M recognizes L . If $x, y \in \Sigma^*$ are distinguishable, then $\Omega_x \neq \Omega_y$, where $\Omega_w := \delta(q_0, w)$. ̂

Formalize our work so far …

We have already saw the essence of the following lemma:

We have already saw the essence of the following lemma:

Lemma

 $\Omega_x \neq \Omega_y$, where $\Omega_w := \delta(q_0, w)$. ̂

Let use this lemma to prove the theorem on the previous slide.

- Let L be a regular language over Σ and M be a DFA $(Q, \Sigma, \delta, q_0, A)$ such that M recognizes L . If $x, y \in \Sigma^*$ are distinguishable, then
	-

Formalize our work so far …

Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states. **Proof of Theorem**

Proof:

Proof: Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set and let

Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof: Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set and let $M = (Q, \Sigma, \delta, q_0, A)$

- Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
	-

Proof: Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set and let

lemma $q_i \neq q_j$ for all $i \neq j$. As such, $q_i \neq q_j$ for all $i \neq j$

- Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
	-
- $M = (Q, \Sigma, \delta, q_0, A)$ be any DFA that accepts L . Also let $q_i = \Omega_w = \delta(q_0, \mathbf{m})$. Then by L . Also let $q_i = \Omega_{w_i} = \delta(q_0, \mathbf{F})$ ̂ Wi 4

Proof: Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set and let lemma $q_i \neq q_j$ for all $i \neq j$. As such, $q_i \neq q_j$ for all $i \neq j$ **of Theore**

e *F* is a fooling

that accepts
 $w_1, w_2, ..., w_m$

A that accepts $q_j \neq q_j$ for all $l \neq j$. As such,
 $[Q] \geq |{q_1, ..., q_m}| = |{w_1, ..., w_m}| = |\&$

- Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
- $M = (Q) \Sigma, \delta, q_0, A$ be any DFA that accepts L . Also let $q_i = \Omega_w = \delta(q_0, x_i)$. Then by *L* . Also let $q_i = \Omega_{w_i} = \delta(q_0, x_i)$ ̂ $(0,\Sigma,\delta,q_0,A)$ # - 12
	- $|Q| \geq |{q_1, ..., q_m}| = |{w_1, ..., w_m}| = |A|$

Proof: Let $F = \{w_1, w_2, ..., w_m\}$ be the fooling set and let

lemma $q_i \neq q_j$ for all $i \neq j$. As such, $q_i \neq q_j$ for all $i \neq j$

- Suppose F is a fooling set for L . If F is finite then there is no DFA M that accepts L with less than $|F|$ states.
	-
	- $M = (Q, \Sigma, \delta, q_0, A)$
- be any DFA that accepts L . Also let $q_i = \Omega_w = \delta(q_0, x_i)$. Then by *L* . Also let $q_i = \Omega_{w_i} = \delta(q_0, x_i)$ ̂
- $|Q| \geq |{q_1, ..., q_m}| = |{w_1, ..., w_m}| = |A|$ F ess than $|F|$ s
oling set and let
 L, δ, q_0, A
t $q_i = \Omega_{w_i} = \hat{\delta}(\lambda)$
 $\lfloor \{w_1, \ldots, w_m\} \rfloor$ ⑳

Proof by contradiction

Proof by contradiction

distinguishable and define $F_k := \{w_1, w_2, ..., w_k\}$ for $i \ge 1$.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise*

Proof by contradiction

Let $w_1, w_2, …$ ⊆ *F* be an infinite sequence of strings that are *pairwise distinguishable* and define F_k : $= \{w_1, w_2, ..., w_k\}$ for $i \geq 1$. $\mathsf{Assume}\ \exists\ M=(\mathcal{Q},\Sigma,\delta,q_0,A)$ a DFA for L . Then by the previous *theorem*, $|Q| > |F_k|$ for all k. infinit $\left(\widehat{F_k}\right)$

Infinite Fooling Sets

Corollary: If *L* has an infinite fooli

$$
F_1 = \langle w_1 \rangle
$$

\n $F_2 = \langle w_1, w_2 \rangle$
\n $F_3 = \langle w_1, w_2, w_3 \rangle$
\n $\langle w_1, w_2, w_3 \rangle$
\n $\langle w_1, w_2, w_3 \rangle$

-
-

Proof by contradiction

 $\mathsf{Assume}\ \exists\ M=(\mathcal{Q},\Sigma,\delta,q_0,A)$ a DFA for L . Then by the previous *theorem*, $|Q| > |F_k|$ for all k.

But *k* is not bounded above. As such |*Q*|*cannot* be bounded above.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise distinguishable* and define $F_k := \{w_1, w_2, ..., w_k\}$ for $i \ge 1$.

Proof by contradiction

- $\mathsf{Assume}\ \exists\ M=(\mathcal{Q},\Sigma,\delta,q_0,A)$ a DFA for L . Then by the previous *theorem*, $|Q| > |F_k|$ for all k.
-
- But *k* is not bounded above. As such |*Q*|*cannot* be bounded above. Therefore M cannot be a D**F(inite)A** \Longrightarrow contradiction.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings that are *pairwise distinguishable* and define $F_k := \{w_1, w_2, ..., w_k\}$ for $i \ge 1$.

Examples

Exercises with fooling sets Example 1 - $\Sigma = \{0,1\}$

• $L_1 = \{0^n1^n \mid n \ge 0\}$

it is infinite in size ↑ $\mathcal{F} = {\alpha_0}^i \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right),$ is a r fooling cet. of and of should be pairwise distinguishable and
i
i $F = \{0^i \mid i \ge 0\}$, is a fooling of
i and 0^i shoold be pairwise
 $0^i 1^i 6^i 1$ $0^i 1^i 6^i 1$, j $\neq \infty$

Exercises with fooling sets Example $2 - \Sigma = \{0, 1\}$ • $L_2 = \{ w \in \Sigma^* \mid \#_0(w) = \#_1(w) \}$ $F= 20^6$ 1 : 20^7 . Show that this works Chave to finish argument precisely)

Exercises with fooling sets Example 3 - $\Sigma = \{0,1\}$

• $L_3 = \{ w \in \Sigma^* \mid w = \text{rev}(w) \}$

 $F = \begin{cases} 0^i & l > 0 \\ 0 & l \end{cases}$ $=$ $\frac{1}{2}$ What is a distinguieling suffix for a pair in ^F? \Rightarrow \Rightarrow \Rightarrow α coch tuf $\delta^{i}\chi$ \in α and $\delta^{i}\chi$ \notin \Box . s tut $\delta^{i}z$ \in L
 s $\delta^{i}z$ \in L

Proving non-regularity: Closure properties

• We know that *regular* languages are **closed** under concatenation, union and

Kleene star.

- We know that *regular* languages are **closed** under concatenation, union and Kleene star.
	- **• Fact:** They are also closed under complementation and intersection.

- We know that *regular* languages are **closed** under concatenation, union and Kleene star.
	- **• Fact:** They are also closed under complementation and intersection. ment dar und
- **•** Suppose: $L_n = L_u \,\bigsqcup L_r$ where $\bigsqcup \, \in \, \Set{\, \cap\, , \cup\, , \, \circ\, \}$ or [↑] A regular gues M

non regolar

- We know that *regular* languages are **closed** under concatenation, union and Kleene star.
	- **• Fact:** They are also closed under complementation and intersection.
- **•** Suppose:

$$
L_n = L_u \square L_r \quad \text{where} \quad \square \in \{ \cap, \cup, \circ \} \text{ or}
$$
\n
$$
L_n = \overline{L}_u \quad \text{where} \quad \overline{()} \in \{ ()^*, \overline{()} \}
$$

- We know that *regular* languages are **closed** under concatenation, union and Kleene star.
	- **• Fact:** They are also closed under complementation and intersection.
- **•** Suppose:

$$
L_n = L_u \Box L_r \quad \text{where} \quad \Box \in \{ \cap, \cup, \circ \} \text{ or}
$$
\n
$$
L_n = \overline{L}_u \quad \text{where} \quad \overline{O} \in \{ \big(\rangle^*, \overline{O} \}
$$

• What can we say about L_u ?

Example 1 Closure properties & non-regularity

Recall

 $L_1 = \{0^n1^n \mid n \ge 0\}$ and $L_2 = \{w \in \Sigma^* \mid #_0(w) = #_1(w)\}\$

Example 1 Closure properties & non-regularity n-regularity
 $w \in \Sigma^* + \frac{\#_0(w) = \#_1}{\pi^2}$

about L_2 ?
 $\left\{\begin{array}{ccc} & \nearrow & \uparrow & \searrow & \nearrow \\ & & \searrow & \searrow & \searrow & \nearrow \\ & & & \searrow & \searrow & \nearrow \end{array}\right.$

- Recall ↳ canonical example
- By now we know L_1 is non-regular. What about L_2 ?

 $L_1 = \{0^n1^n \mid n \ge 0\}$ and $L_2 = \{w \in \Sigma^* \mid \#_0(w) = \#_1(w)\}\$

 2722 regular L_1 is non-regular. What about L_2 ?
 $L_1 = L_2 \cap \{ \circ \cdot \cdot \cdot \}$ aregular
 $d = L_1 \cap \{ \circ \cdot \cdot \cdot \}$ language.

• Recall

- By now we know L_1 is non-regular. What about L_2 ?
- Which set is larger? Can we get L_1 from L_2 using a regular operation?

 $L_1 = \{0^n1^n \mid n \ge 0\}$ and $L_2 = \{w \in \Sigma^* \mid #_0(w) = #_1(w)\}\$

Example 1 Closure properties & non-regularity

• Let

Example 2 Closure properties & non-regularity

 $L_3 := \{a^m b^n \mid m \ge 0, n \ge 0, m \ne n\}$ Prove lay contradiction Prove by contradiction properties & non-regularity
 $L_1 = 2a^m b^n \int m = n^2$ s a non-regularity
 $m=n\frac{7}{3}$ Mote $\frac{1}{13}\neq L_1$

where $\frac{1}{13}\neq L_1$ $\begin{array}{lll} \n\text{wste} & \frac{1}{18} & \neq & \frac{1}{12} \\
\hline\n\text{a befove} & \text{n} & \text{n} & \text{c} \\
\hline\n\text{m} & \neq & \text{n} \\
\hline\n\text{m} & \text{m} & \text{d} & \text{d} \\
\end{array}$ a as well . $L_3 := \{a^m b^n \mid m \ge 0, n \ge 0, m \}$
 Δ oppose L_5 is regular. Then L_3 , is regular $L_1 = L_3 \cap \{a^*b\}$ * Y ↳ leads to contradition

General recipe Closure properties & non-regularity

Myhill-Nerode Theorem Towards the statement

there exists a *distinguishing suffix* $w \in \Sigma^*$ *where the DFA* M *recognizes* L and Σ is the alphabet of M .

• Recall that two strings x, y are *distinguishable relative to* $L = L(M)$ provided
Myhill-Nerode Theorem Towards the statement

- and Σ is the alphabet of M . e disting

a disting

a contract of the contra
- Define x, y to be *equivalent relative* to L (denoted $x \sim_L y$) if there is no distinguishing suffix for x and y . In other words, $x \thicksim_L y$ means that

mathematicians like to be precise, distinguishability is always with respect N to M/L I designed mathem
pre

relative to
ere the D

• Recall that two strings x, y are *distinguishable relative to* $L = L(M)$ provided there exists a *distinguishing suffix* $w \in \Sigma^*$ *where the DFA* M *recognizes* L t
and the post $L = L(M)$ provided
where the DFA M recognizes L
to read as if would not there. are aistinguish?

Myhill-Nerode Theorem Towards the statement

- Recall that two strings x, y are *distinguishable relative to* $L = L(M)$ provided there exists a *distinguishing suffix* $w \in \Sigma^*$ *where the DFA* M *recognizes* L and Σ is the alphabet of M .
- Define x, y to be *equivalent relative to* L (denoted $x \sim_L y$) if there is no distinguishing suffix for x and y . In other words, $x \thicksim_L y$ means that
	- $\forall w \in \Sigma^* : xw \in L \Longleftrightarrow yw \in L$

Myhill-Nerode Theorem Towards the statement Myhill-Nerode Theorem

Towards the statement

• Recall that two strings x, y are distinguishable relative to $L =$

there exists a distinguishing suffix $w \in \Sigma^*$ where the DFA M

and Σ is the alphabet of M.

• Define

- and Σ is the alphabet of M .
- Define x, y to be *equivalent relative to* L (denoted $x \sim_L y$) if there is no distinguishing suffix for x and y . In other words, $x \thicksim_L y$ means that

 \tilde{L} Then \sim_L partitions $L=L(M)$ into equivalence classes.

• Recall that two strings x, y are *distinguishable relative to* $L = L(M)$ *provided* there exists a *distinguishing suffix* $w \in \Sigma^*$ *where the DFA* M *recognizes* L

easily

g

• What is an equivalence class?

- What is an equivalence class?
	- that are equivalent to *a*
		-

• Let \sim be an *equivalence relation* on a nonempty set A. For each $a \in A$, the equivalence class $[a]$ of a is the subset of A consisting of all elements

 $[a] := \{x \in A \mid x \sim a\}$

- What is an equivalence class?
	- that are equivalent to *a*
		-
- What is an equivalence relation?

• Let \sim be an *equivalence relation* on a nonempty set A. For each $a \in A$, the equivalence class $[a]$ of a is the subset of A consisting of all elements

 $[a] := \{x \in A \mid x \sim a\}$

- What is an equivalence class?
	- Let \sim be an *equivalence relation* on a nonempty set A. For each $a \in A$, the equivalence class $[a]$ of a is the subset of A consisting of all elements that are equivalent to *a*
		- $[a] := \{x \in A \mid x \sim a\}$ $x \sim x$ $x \sim y \Rightarrow y \sim x$ r al n'y
A
Avive symmetr
- What is an equivalence relation?
- An *equivalence relation* is a binary relation that is reflexive, symmetric & transitive.

 a arb and brc \Rightarrow arc

• Recall that given sets *X* and *Y*,

X × *Y* := {(*x*, *y*) ∣ *x* ∈ *X*, *y* ∈ *Y*}

- Recall that given sets *X* and *Y*, *X* × *Y* := {(*x*, *y*) | *x* ∈ *X*, *y* ∈ *Y*}
- A *binary relation over* sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.

- Recall that given sets *X* and *Y*, *X* × *Y* := {(*x*, *y*) ∣ *x* ∈ *X*, *y* ∈ *Y*}
- A *binary relation over* sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

- Recall that given sets *X* and *Y*, *X* × *Y* := {(*x*, *y*) | *x* ∈ *X*, *y* ∈ *Y*}
- A *binary relation over* sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

Example 1: Modulo arithmetic

Example 1: Modulo arithmetic We denote by \mathbb{Z}_n (for positive n) the integers modulo n .

- Recall that given sets *X* and *Y*, *X* × *Y* := {(*x*, *y*) | *x* ∈ *X*, *y* ∈ *Y*}
- A *binary relation over* sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

Myhill-Nerode Theorem Quick review - definitions • Recall that given sets *X* and *Y*, *X* × *Y* := {(*x*, *y*) ∣ *x* ∈ *X*, *y* ∈ *Y*} • A *binary relation over* sets X and Y is a Example 1: Modulo arithmetic We denote by \mathbb{Z}_n (for positive n) the integers modulo n . Thus in \mathbb{Z}_3 , we have $1 \equiv_3 4$, $4 \equiv_3 7$, and so on. 255 $5 = 8$ J
A
A

-
- subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

- Recall that given sets *X* and *Y*, *X* X *i* = {(*x*, *y*) | *x* ∈ *X*, *y* ∈ *Y*}
- A *binary relation over* sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

- Recall that given sets X and Y , $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$
- A *binary relation over* sets X and Y is a subset of $X \times Y$. A binary relation on X is a subset of $X \times X$.
- An *equivalence relation* on X is a binary relation that is reflexive, symmetric & transitive.

Myhill-Nerode Theorem Necessary and sufficient condition for regularity

relation \sim_L partitions $L(M)$ into equivalence classes. ↓ "Divide into non-Intersecting subsets such that their union comprises the whole

• If two strings $x \sim_L y$ then x is indistinguishable from y in L . The equivalence

"

Myhill-Nerode Theorem Necessary and sufficient condition for regularity

• If two strings $x \sim_L y$ then x is indistinguishable from y in L . The equivalence relation \sim_L partitions $L(M)$ into equivalence classes.

A language $L = L(M)$ is regular if and only if \sim_L has a finite number of *equivalence classes. Furthermore, this number is equal to the number of states in the minimal DFA accepting M L* .

Myhill-Nerode Theorem Necessary and sufficient condition for regularity

• If two strings $x \sim_L y$ then x is indistinguishable from y in L . The equivalence relation \sim_L partitions $L(M)$ into equivalence classes.

- *A* language $L = L(M)$ is regular if and only if \sim_L has a finite number of *equivalence classes. Furthermore, this number is equal to the number of states in the minimal DFA accepting M L* .
	-

Example: Let L be the set of binary strings divisible by 3. Show that L is regular.

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

of the even bits.

• *ε* and 0 are indistinguishable: Both *εw*, 0*w* ∈ *L* **or** *εw*, 0*w* ∉ *L* for all *w*.

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

- **•** *ε* and 0 are indistinguishable: Both *εw*, 0*w* ∈ *L* **or** *εw*, 0*w* ∉ *L* for all *w*.
	- **•** By the same argument 11 is indistinguishable from *ε*,0.

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

of the even bits. Let *L* be the set of binary strings divisible by 3. Show that *I*
 Hint: A binary string is divisible by 3 if the sum of the odd

of the even bits.
 ϵ and 0 are indistinguishable: Both ϵw 0w \in *L* or $\overline{\epsilon w}$

- By the same argument 11 is indis
- Thus $[0] = \{\varepsilon, 0, 11, 110, 1001, 110\}$
-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

\n- \n
$$
\epsilon
$$
 and 0 are indistinguishable: Both ϵw and $0w \in L$ or ϵw , $0w \notin L$ for all w .\n
\n- \n By the same argument 11 is indistinguishable from ϵ , 0.\n
\n- \n Thus $[0] = \{\epsilon, 0, 11, 110, 1001, 1100, 1111, \ldots\} \rightarrow \epsilon \epsilon w$ with ϵw and ϵw is exactly ϵw with ϵw .\n
\n

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

• 1 is distinguishable from [0] since for any $x \in [0]$ we have $x \cdot 1 \notin L$ but . 1 ⋅ 1 ∈ *L*

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

- 1 is distinguishable from [0] since for any $x \in [0]$ we have $x \cdot 1 \notin L$ but . 1 ⋅ 1 ∈ *L*
	- **•** Same holds true for 100 why?

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

- . 1 ⋅ 1 ∈ *L*
	- **•** Same holds true for 100 why?
	- Thus $[1] = \{1,100,111,1010,...\}$
-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Myhill-Nerode Theorem
\nLet *L* be the set of binary strings divisible by 3. Show that *L* is regular.
\n**Hint:** A binary string is divisible by 3 if the **sum of the odd bits** equal the **su** of the **even bits**.
\n• 1 is distinguishable from [0] since for any
$$
x \in [0]
$$
 we have $x \cdot 1 \notin L$ but $1 \cdot 1 \in L$.
\n• Same holds true for $100 -$ why?

equivalence class of numbers ↳ leaving remainder one on division by 3.

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

of the even bits.

• 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

- 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.
	- **•** Same holds true for 101 why?

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

of the even bits.

- 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$. and [1]. F

e have $y \cdot$

why?
	- **•** Same holds true for 101 why?
	- Thus $[10] = \{10, 101, ...\}$

Equivalence class of numbers $envIFY \rightarrow 0$ any $x \in [0]$ we have $x \cdot 0 \in L$ is
ensue $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.
why? Equivalence class of numb
leaving siemelineer 2 on Choureme cla
Claring siemeline
clusion by 3.

Let *L* be the set of binary strings divisible by 3. Show that *L* is regular.

-
- **Hint**: A binary string is divisible by 3 if the **sum of the odd bits** equal the **sum**

- 10 is distinguishable from [0] and [1]. For any $x \in [0]$ we have $x \cdot 0 \in L$ but $10 \cdot 0 \notin L$. For any $y \in [1]$ we have $y \cdot 1 \in L$ but $10 \cdot 1 \notin L$.
- **•** Same holds true for 101 why? There are no more classes to $\frac{14}{14}$. I
have y
hy? consider !! Remainder is ⁰, $y \in [0]$ and $y \in [1]$ we have the set of $101 - \text{wt}$
and \overline{y} and \overline{y} and \overline{y} and \overline{y} and \overline{y}
	- Thus $[10] = \{10, 101, \dots\}$
	- [0], [1], [10] form a partition of Σ^* under \sim_L . Thus L is regular.

Next time

- This lecture was about some tools for recognizing non-regular lanaguages
- Next week we will see the equivalent of DFAs for *context-free* languages.
	- Called *Pushdown Automata*
	- Context sensitive languages & Linear Bounded Automata (LBAs) will not be covered
		- See Sipser's book

Source: Kani Archive

Next time

- This lecture was about some tools for recognizing non-regular lanaguages
- Next week we will see the equivalent of DFAs for *context-free* languages.
	- Called *Pushdown Automata*
	- Context sensitive languages & Linear Bounded Automata (LBAs) will not be covered
		- See Sipser's book

Source: Kani Archive