
Pushdown automata and
context-free languages

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Introduction
Will this code execute successfully?

2

YES

Introduction
Will this code execute successfully?

3

What was the compiler expecting?

NO

What can an arithmetic expression be?

• int - A single number.

• Expr Op Expr - Two expressions joined by an operator.

• Recursive Expression

4

Expr

int

Expr ExprOp

int +

Expr ExprOp

int +

ExprOp

Arithmetic expressions

• Here is one way to express these rules

• Expr → int

• Expr → Expr Op Expr

• Expr → (Expr)

• Op → + | - | × | /

5

This is called a production rule. It says “if you
see Expr, you can replace it with Expr Op Expr.”

This one says “if you see Op, you can replace it
with + or - or × or /

A context-free grammar (or CFG) is a recursive
set of rules that define a language.

Definition:

A CFG is a quadruple where

G = (Variables, Terminals, Productions, Start Var)

G = (V, T, P, S)

Grammar - rules for a language

6

regular

context free

context sensitive

recursively enumerable

Definition: A CFG is a quadruple

• is a finite set of non-terminal (variable) symbols

• is a finite set of terminal symbols (alphabet)

• is a finite set of productions, each of the form
 where and is a string in .

Formally,

• is a start symbol .

G = (V, T, P, S)

V

T

P
A → α A ∈ V α (V ∪ T)*

P ⊂ V × (V ∪ T)*

S ∈ V

Context Free Grammar

7

Expr → int

Expr → Expr Op Expr

Expr → (Expr)

Op → + | - | × | /

•

•

• (abbrev. for)

•

V = {S}

T = {0,1}

P = {S → ε ∣ 0S0 ∣ 1S1} S → ϵ, S → 0S0, S → 1S1

S = S

Context Free Grammar

8

Example

S 0S0 01S10 011S110 011ϵ110 011110

Derives relation
Formalism for how strings are derived/generated

Definition: Let be a CFG. For strings, we
say derives from , denoted by , if there exist strings in

 such that

•

•

•

Examples:

G = (V, T, P, S) α1, α2 ∈ (V ∪ T) *
α2 α1 α1 ⇝ α2 β, γ, δ

(V ∪ T) *

α1 = βAδ

α2 = βγδ

A → γ ∈ P

S ⇝ ϵ, S ⇝ 0S0, 0S1 ⇝ 01S11, 0S1 ⇝ 01 .

9

P = {S → ε ∣ 0S0 ∣ 1S1}

10

Definition: For integers define inductively as follows:

• if

• if and

• Alternatively, if and

Finally, we use the notation to mean that can be derived from . In
other words,

 if for some

k ≥ 0, α1
k⇝ α2

α1
0⇝ α2 α1 = α2

α1
k⇝ α2 α1 ⇝ β1 β1

k−1⇝ α2

α1
k⇝ α2 α1

k−1⇝ β1 β1 ⇝ α2

α1
*⇝ α2 α2 α1

α1
*⇝ α2 α1

k⇝ α2 k

Derives relation
Formalism for how strings are derived/generated

Context Free Languages

Definition: Let be a CFG. Then the language generated by G,
denoted by is the set

.

Thus, a language is context-free (called a context-free language or CFL) if it is
generated by a context-free grammar.

Alternatively, a language is said to be a CFL, if there exists a CFG such that

G = (V, T, P, S)
L(G)

L(G) := {w ∈ T* ∣ S *⇝ w}
L

L G
L = L(G) .

11

12

Production rule examples

•

•

•

L = {0n1n ∣ n ≥ 0}

L = {0n1m ∣ m ≥ n}

L = {0n1m ∣ m, n ≥ 0}

Context Free Languages

CFL/CFGs and regular languages
Recall Chomsky Heirarchy

• The picture depicts regular languages as a
proper subset of context-free languages.

• Thus, all regular languages are also CFLs.

• What was the grammar that generated a
regular language?

• We can start with the DFA recognizing a
regular language.

• Then, extend the algebraic method.

13

regular

context free

context sensitive

recursively enumerable

Converting DFAs into CFL

G = {A, B, C, D, E}, {a, b},

A → aA, A → bA, A → aB
B → bC

C → aD,
D → bE,

E → aE, E → bE, E → ε

, F

14

A B C D E
a b ba

a, b a, b

Converting regular languages into CFL

: DFA for regular language
M = (Q, Σ, δ, q0, F) L

G =
Variables⏞

Q ,
Terminals⏞

Σ ,

Productions
{q → aδ(q, a) ∣ q ∈ Q, a ∈ Σ}

⋃
q∈F

{q → ε} ,
Start var⏞q0

15

A B C D E
a b ba

a, b a, b

Converting regular languages into CFL

In regular languages:

• Terminals can only appear on one side of the production string

• Only one variable allowed in the production result

G = {A, B, C, D, E}, {a, b}

A → aA, A → bA, A → aB
B → bC

C → aD,
D → bE,

E → aE, E → bE, E → ε

, A

16

G = {A, B, C, D, E}, {a, b}

A → aA, A → bA, A → aB
B → bC

C → aD,
D → bE,

E → aE, E → bE, E → ε

, A

In regular languages:

• Terminals can only appear on one side of the production string

• Only one variable allowed in the production result

G = {A, B, C, D, E}, {a, b}

A → aA, A → bA, A → aB
B → bC

C → aD,
D → bE,

E → aE, E → bE, E → ε

, AG = {A, B, C, D, E}, {a, b}

A → aA, A → bA, A → aB
B → bC

C → aD,
D → bE,

E → aE, E → bE, E → ε

, A

Converting regular languages into CFL

17

G = {A, B, C, D, E}, {a, b}

A → aA, A → bA, A → aB
B → bC

C → aD,
D → bE,

E → aE, E → bE, E → ε

, A

Closure Properties of CFL

Let and be CFGs for
and

Simplifying assumption: , that is, non-terminals are not shared

• CFLs are closed under union: is a CFL.

• CFLs are closed under concatenation: is a CFL.

• CFLs are closed under Kleene star: CFL implies is a CFL.

G1 = (V1, T, P1, S1) G2 = (V2, T, P2, S2) L1 = L(G1)
L2 = L(G2)

V1 ∩ V2 = ∅

L1 ∪ L2

L1 ⋅ L2

Lk Lk
*

18

Pushdown automata

19

Pushdown automata
The machine that recognizes CFGs

We established that is a CFL but not a regular language.

We have NFAs from regular languages. What can we add to enable them to
recognize CFLs?

The key idea is that CFGs allow recursive definitions.

(ECE 220) What enables recursion in programming?

We need a stack!

{0n1n |n ≥ 0}

20

Push-down Automata
The machine that generates CFGs

21

q1 q2

q4 q3

ε, ε → $

ε, $ → ε

1,0 → ϵ

0, ε → 0

1,0 → ϵ

start

Each transition is formatted as:

<token read>, <stack pop> → <stack push>

Push-down Automata
The machine that generates CFGs

22

q1 q2

q4 q3

ε, ε → $

ε, $ → ε

1,0 → ϵ

0, ε → 0

1,0 → ϵ

start

Does this machine recognize ?0011

Push-down Automata
The machine that generates CFGs

23

q1 q2

q4 q3

ε, ε → $

ε, $ → ε

1,0 → ϵ

0, ε → 0

1,0 → ϵ

start

Does this machine recognize ?0101

Formal Tuple Notation
Definition: A non-deterministic push-down automaton
is a 6-tuple where

• is a finite set whose elements are called states,

• is a finite set called the input alphabet,

• is a finite set called the stack alphabet,

• is the transition
function

• is the start state

• is the set of accepting states

P = (Q, Σ, Γ, δ, s, A)
Q
Σ
Γ
δ : Q × Σ ∪ {ε} × Γ ∪ {ε} → 𝒫 (Q × (Γ ∪ {ε}))
s
A

24

Non-deterministic PDAs are more “powerful” than
deterministic PDAs. Hence, we’ll only be talking
about non-deterministic PDAs.

CFGs and PDAs
Convert a CFG to a PDA

Consider,

What is a PDA for this?

Key idea: Recreate the string on the stack

• Every time we see a non-terminal, we replace it with one of the replacement
rules.

• Every time we see a terminal symbol, we take that symbol from the input.

• If we reach a point where the stack and input are empty, then we accept the string.

S → 0S ∣ 1 ∣ ϵ

25

CFGs and PDAs
Convert a CFG to a PDA

26

Input

qs

ε, ε → $

q2

ε, ε → S

ql
ε, $ → ε

qa

Stack

• First let’s put in a to mark the end of the
string

• Also let’s put in the start symbol on the
stack.

• We can accept if nothing left to read and
stack is empty.

$
S → 0S ∣ 1 ∣ ϵ

CFGs and PDAs
Convert a CFG to a PDA

27

Next we want to add a loop for every non-terminal
symbol that replaces that non-terminal with the result.

Consider the rule:

• So we got to pop the non-terminal and …

• Add a non-terminal to the stack.

• And add a terminal to the stack.

S → 0S
S

S
0

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

qa

ε, S → S

qp21

ε, ε → 0

Input Stack

S → 0S ∣ 1 ∣ ϵ

ql

CFGs and PDAs
Convert a CFG to a PDA

28

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

qp21

ε, S → S

ε, ε → 0

Input Stack

S → 0S ∣ 1 ∣ ϵ

Is this state necessary?

• Recall generalized NFAs?

• Can follow same route to allow entire
strings to be pushed onto stack.

CFGs and PDAs
Convert a CFG to a PDA

29

Is this state necessary?

• Recall generalized NFAs?

• Can follow same route to allow entire
strings to be pushed onto stack.

• But we are going to stick with PDAs.

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

ε, S → 0S

Input Stack

S → 0S ∣ 1 ∣ ϵ

CFGs and PDAs
Convert a CFG to a PDA

30

ε, S → 1
ε, S → ε

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

qp21

ε, S → S

ε, ε → 0

• Do the same thing for and S → 1 S → ε

Input Stack

S → 0S ∣ 1 ∣ ε

 alf
Convert a CFG to a PDA

31

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

qp21

ε, S → S

ε, ε → 0

• If we see a non-terminal symbol on the
stack, then we can cross that symbol from
the input.

Input Stack

S → 0S ∣ 1 ∣ ε

0,0 → ε
1,1 → ε

ε, S → 1
ε, S → ε

CFGs and PDAs
Convert a CFG to a PDA

32

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

qp21

ε, S → S

ε, ε → 0

Study the automata to verify:

• Does this automata accept ?

• Does this automata accept ?

001

010

Input Stack

S → 0S ∣ 1 ∣ ε

0,0 → ε
1,1 → ε

ε, S → 1
ε, S → ε

Convert a CFG to a PDA
Another example

33

S → 0T1 ∣ 1

Input Stack

T → T0 ∣ εqs

ε, ε → $

q2

ε, ε → S

ql
ε, $ → ε

qa qp21

ε, T →
0

ε, ε →
T

ε, S → 1
ε, T → ε
0,0 → ε
1,1 → ε

qp11 qp12
ε, ε → T

ε, S
→

1

ε, ε → 0

• Insert transitions for
initialization, start symbol
& accept state

• Add all production rules

• Take care of terminals

• Start with the grammar and
consider the PDA

• Define as follows:

• Insert transitions for initialization, start symbol &
accept state.

• For every production rule in , add a
transition from to , consuming , popping
and pushing .

• For every terminal , add a transition from
to , consuming , popping and pushing .

G = (V, T, P, S)

M = ({qs, ql, q, qa}, T, V ∪ T, δ, qs, {qa})
δ

A → β P
q q ε A

β

t ∈ T q
q t t ε

34

Convert a CFG to a PDA
With generalized PDAs

ϵ, S → 1
ϵ, T → ϵ

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa qp21

ε, T →
0

ε, ε →
T

0,0 → ϵ
1,1 → ϵ

qp11 qp12
ε, ε → T

ϵ, S
→

1

ε, ε → 0

qs

qi

q

qa

ε, ε → S

ε, ε → $

ε, $ → ε
0,0 → ϵ
1,1 → ϵ

ϵ, S → 1
ϵ, T → ϵ

ε, T → T0

ϵ, S → 1T0

Next class of languages
Canonical non-CFL

•

• Intuition why a PDA cannot recognize this language.

• This is in fact what we call a context-sensitive language.

• Corresponding automaton is called Linear Bounded Automaton (LBA)

• We will not discuss LBAs

• Next class: Turing Machines

L = {anbncn ∣ n ≥ 0}

35

