Pushdown automata and context-free languages Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Introduction

Will this code execute successfully?

YES

Output

/tmp/3w7RzFLskv.o

=== Code Execution Successful ===

Introduction

Will this code execute successfully?

What was the compiler expecting?

NO

What can an arithmetic expression be?

• int - A single number.

int

Expr

Arithmetic expressions

- Here is one way to express these rules
- Expr \rightarrow int
- Expr → Expr Op Expr -
- Expr \rightarrow (Expr)
- Op \rightarrow + | | x | /

This is called a *production rule*. It says "if you see Expr, you can replace it with Expr Op Expr."

This one says "if you see **Op**, you can replace it with + or - or × or /

Grammar - rules for a language

A context-free grammar (or CFG) is a recursive set of rules that define a language.

Definition:

A CFG is a quadruple G = (V, T, P, S) where

G = (Variables, Terminals, Productions, Start Var)

Context Free Grammar

- **Definition:** A CFG is a quadruple G = (V, T, P, S)
 - V is a finite set of *non-terminal* (*variable*) *symbols*
 - T is a finite set of *terminal symbols* (*alphabet*)
 - *P* is a finite set of *productions*, each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$. Formally, $P \subset V \times (V \cup T)^*$
 - $S \in V$ is a start symbol.

Expr \rightarrow int Expr → Expr Op Expr $Expr \rightarrow (Expr)$ $Op \rightarrow + |-| \times |/$

Context Free Grammar Example

- $V = \{S\}$
- $T = \{0, 1\}$
- $P = \{S \rightarrow \varepsilon \mid 0S0 \mid 1S1\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1$)
- S = S

$S \rightarrow 0SO \rightarrow 01S1O \rightarrow 011S11O \rightarrow 011\epsilon 110 \rightarrow 011$

Derives relation Formalism for how strings are derived/generated

Definition: Let G = (V, T, P, S) be a CFG. For strings, $\alpha_1, \alpha_2 \in (V \cup T)^*$ we say α_2 derives from α_1 , denoted by $\alpha_1 \rightsquigarrow \alpha_2$, if there exist strings β, γ, δ in $(V \cup T)^*$ such that

•
$$\alpha_1 = \beta A \delta$$

•
$$\alpha_2 = \beta \gamma \delta$$

• $A \rightarrow \gamma \in P$

Examples: $S \rightsquigarrow \epsilon, S \rightsquigarrow 0SO, 0S1 \rightsquigarrow 01S11, 0S1 \rightsquigarrow 01$.

$P = \{S \rightarrow \varepsilon \mid 0S0 \mid 1S1\}$

Derives relation Formalism for how strings are derived/generated

•
$$\alpha_1 \xrightarrow{\mathbf{0}} \alpha_2$$
 if $\alpha_1 = \alpha_2$
• $\alpha_1 \xrightarrow{\mathbf{k}} \alpha_2$ if $\alpha_1 = \alpha_2$

•
$$\alpha_1 \stackrel{k}{\rightsquigarrow} \alpha_2$$
 if $\alpha_1 \stackrel{k}{\rightsquigarrow} \beta_1$ and $\beta_1 \stackrel{k-1}{\rightsquigarrow} \alpha_2$
• Alternatively, $\alpha_1 \stackrel{k}{\rightsquigarrow} \alpha_2$ if $\alpha_1 \stackrel{k-1}{\rightsquigarrow} \beta_1$ and $\beta_1 \stackrel{k}{\rightsquigarrow} \alpha_2$

* Finally, we use the notation $\alpha_1 \rightsquigarrow \alpha_2$ to mean that α_2 can be derived from α_1 . In other words,

 $\alpha_1 \rightsquigarrow \alpha_2 \text{ if } \alpha_1$

Definition: For integers $k \ge 0$, define $\alpha_1 \stackrel{k}{\rightsquigarrow} \alpha_2$ inductively as follows:

$$\xrightarrow{k} \sim \alpha_2$$
 for some k

Context Free Languages

denoted by L(G) is the set

$$L(G) := \left\{ w \in T^* \mid S \stackrel{*}{\rightsquigarrow} w \right\}.$$

generated by a context-free grammar.

 $L = L(G) \, .$

Definition: Let G = (V, T, P, S) be a CFG. Then the language generated by G,

- Thus, a language L is context-free (called a context-free language or CFL) if it is
- Alternatively, a language L is said to be a CFL, if there exists a CFG G such that

Context Free Languages Production rule examples

- $L = \{0^n 1^n \mid n \ge 0\}$
- $L = \{0^n 1^m \mid m \ge n\}$
- $L = \{0^n 1^m \mid m, n \ge 0\}$

CFL/CFGs and regular languages Recall Chomsky Heirarchy

- The picture depicts regular languages as a proper subset of context-free languages.
- Thus, all regular languages are also CFLs.
 - What was the grammar that generated a regular language?
 - We can start with the DFA recognizing a regular language.
 - Then, extend the algebraic method.

Converting DFAs into CFL

$$\begin{bmatrix}
A \rightarrow aA, A \rightarrow bA, A \rightarrow aB \\
B \rightarrow bC \\
C \rightarrow aD, \\
D \rightarrow bE, \\
E \rightarrow aE, E \rightarrow bE, E \rightarrow \varepsilon
\end{bmatrix}, F$$

E

 $M = (Q, \Sigma, \delta, q_0, F)$: DFA for regular language L $G = \begin{bmatrix} \text{Variables Terminals} & \overline{\{q \to a\delta(Q)\}} \\ \widehat{Q} & \widehat{\Sigma} & \widehat{\Sigma} & \widehat{Q} \end{bmatrix}$

Productions

$$\widehat{q(q, a)} \mid q \in Q, a \in \Sigma$$
 $\bigcup \{q \in Q, a \in \Sigma\}$

 Start var

 $\bigcup \{q \to \varepsilon\}$
 $\widehat{q_0}$

In regular languages:

- Terminals can only appear on one side of the production string
- Only one variable allowed in the production result

In regular languages:

- Terminals can only appear on one side of the production string
- Only one variable allowed in the production result

Closure Properties of CFL

and $L_2 = L(G_2)$

- Simplifying assumption: $V_1 \cap V_2 = \emptyset$, that is, non-terminals are not shared • CFLs are closed under union: $L_1 \cup L_2$ is a CFL.
- CFLs are closed under concatenation: $L_1 \cdot L_2$ is a CFL.
- CFLs are closed under Kleene star: L_k CFL implies L_k^* is a CFL.

Let $G_1 = (V_1, T, P_1, S_1)$ and $G_2 = (V_2, T, P_2, S_2)$ be CFGs for $L_1 = L(G_1)$

Pushdown automata

Pushdown automata The machine that recognizes CFGs

We established that $\{0^n 1^n \mid n \ge 0\}$ is a CFL but not a regular language.

recognize CFLs?

The key idea is that CFGs allow recursive definitions.

(ECE 220) What enables recursion in programming?

We need a stack!

- We have NFAs from regular languages. What can we add to enable them to

Push-down Automata The machine that generates CFGs

Each transition is formatted as:

<token read>, <stack pop> \rightarrow <stack push>

Push-down Automata The machine that generates CFGs

Does this machine recognize 0011?

Push-down Automata The machine that generates CFGs

Does this machine recognize 0101?

Formal Tuple Notation

is a 6-tuple where

- *Q* is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- Γ is a finite set called the stack alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \times \Gamma \cup \{\varepsilon\} \to \mathscr{P}(Q \times (\Gamma \cup \{\varepsilon\}))$ is the transition function
- *s* is the start state
- A is the set of accepting states

Non-deterministic PDAs are more "powerful" than deterministic PDAs. Hence, we'll only be talking about non-deterministic PDAs.

Definition: A non-deterministic push-down automaton $P = (Q, \Sigma, \Gamma, \delta, s, A)$

Consider,

What is a PDA for this?

Key idea: Recreate the string on the stack

- rules.

$S \rightarrow 0S \mid 1 \mid \epsilon$

• Every time we see a non-terminal, we replace it with one of the replacement

Every time we see a terminal symbol, we take that symbol from the input.

• If we reach a point where the stack and input are empty, then we accept the string.

- $S \rightarrow 0S \mid 1 \mid \epsilon$
- First let's put in a \$ to mark the end of the string
- Also let's put in the start symbol on the stack.
- We can accept if nothing left to read and stack is empty.

$S \rightarrow 0S \mid 1 \mid \epsilon$

- Next we want to add a loop for every non-terminal symbol that replaces that non-terminal with the result.
- Consider the rule: $S \rightarrow 0S$
 - So we got to pop S the non-terminal and ...
 - Add a non-terminal *S* to the stack.
 - And add a terminal () to the stack.

- $S \rightarrow 0S \mid 1 \mid \epsilon$
- , Is this state necessary?
- Recall generalized NFAs?
- Can follow same route to allow entire strings to be pushed onto stack.

- $S \rightarrow 0S \mid 1 \mid \epsilon$
- Is this state necessary?
- Recall generalized NFAs?
- Can follow same route to allow entire strings to be pushed onto stack.
- But we are going to stick with PDAs.

$S \rightarrow 0S \mid 1 \mid \varepsilon$

• Do the same thing for $S \to 1$ and $S \to \varepsilon$

alf **Convert a CFG to a PDA**

• If we see a non-terminal symbol on the stack, then we can cross that symbol from the input.

$S \rightarrow 0S \mid 1 \mid \varepsilon$

- $S \rightarrow 0S \mid 1 \mid \varepsilon$
- Study the automata to verify:
 - Does this automata accept 001?
 - Does this automata accept 010?

Convert a CFG to a PDA Another example

 $S \rightarrow 0T1 \mid 1$

- Insert transitions for initialization, start symbol
- Add all production rules
- Take care of terminals

Convert a CFG to a PDA With generalized PDAs

• Start with the grammar G = (V, T, P, S) and consider the PDA

$$M = \left(\{q_s, q_l, \boldsymbol{q}, q_a\}, \boldsymbol{T}, V \cup \boldsymbol{T}, \boldsymbol{\delta}, q_s, \{q_a\}\right)$$

- Define δ as follows:
 - Insert transitions for initialization, start symbol & accept state.
 - For every production rule $A \rightarrow \beta$ in P, add a transition from q to q, consuming ε , popping A and pushing β .
 - For every terminal $t \in T$, add a transition from q to q, consuming t, popping t and pushing ε .

Next class of languages Canonical non-CFL

- $L = \{a^n b^n c^n \mid n \ge 0\}$
 - Intuition why a PDA cannot recognize this language.
 - This is in fact what we call a context-sensitive language.
 - Corresponding automaton is called Linear Bounded Automaton (LBA)
 - We will not discuss LBAs
- Next class: Turing Machines