Pushdown automata and
context-free languages

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - lvan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Introduction

Will this code execute successfully?

main.c

1

2 #include <stdio.h>

3

4~ 1nt main() {

5
6
7

// Online C compiler to run C program online

}

int a
int b

2
<

YES

Output

/tmp/3w7/RzFLskv.o

=== (Code Execution Successful

Clear

Introduction

Will this code execute successfully? NO

main.c £, Share “ Output Clear
1 // Online C compiler to run C program online /tmp/Zgon05DwrB.c: In function 'main':

2 #include <stdio.h> ERROR!

3 /tmp/ZgonO5DwrB.c:6:14: error:. expected expression
4~ int main() { before ':' token

5 int a = 2; 6 | int b =

6 int b = | A

7 |

=== Code Exited With Errors ===

What was the compiler expecting?

3

What can an arithmetic expression be?

: . Int
e int - A single number.

EXpr

 Expr Op Expr - Two expressions joined by an operator.

Int +
Expr Op Expr

 Recursive Expression

Expr Op EXpr

Arithmetic expressions

 Here is one way to express these rules

e Expr — Int

. Expr — Expr Op Expr This is called a productionl rulg. It says “if you
see Expr, you can replace it with Expr Op Expr.”

« Expr — (Expr)

e Op = +|-|x|/ This one says “if you see Op, you can replace it
with + or - or x or /

Grammar - rules for a language

A (or) is a recursive
set of rules that define a language. recursively enumerable

Definition: context sensitive

A is a quadruple G = (V, T, P, S) where

context free

G = (Variables, Terminals, Productions,)

Context Free Grammar

Definition: A CFG is a quadruple G = (V, T, P, 5)
« Vs a finite set of non-terminal (variable) symbols
« [is a finite set of terminal symbols (alphabet)

» P is a finite set of productions, each of the form

A — awhere A € Vand aisastringin (VU T)*.

Formally, P C VX (VUT)

e S € Visastart symbol .

Expr — Int

Expr = Expr Op Expr
Expr — (Expr)

Op 2 +|-|x]|/

Context Free Grammar

Example

» V= {5}

. T=10,1)

e P=1{S— £]|0S0|1S1} (abbrev.forS — ¢, S — 0S50, S — 1S1)
. S=38§

S — 050 — 01510 — 0115110 — Ollell0 — 011110

P={S—&|0S0|1S1)
Derives relation

Formalism for how strings are derived/generated

Definition: Let G = (V, T, P, S) be a . For strings, a;, o, € (VUT)™ we
say a, derives from «;, denoted by a; v «,, if there exist strings f, 7, 0 in
(VUT)™* such that

c A—>yeEepPlP

Examples: 5 w ¢, § ~ 050, 051 » 01511, 051 w OI.

9

Derives relation

Formalism for how strings are derived/generated

k
Definition: For integers k > 0, define @, v a, inductively as follows:

0 .
o Ollv»azlf061=(,¥2

ko k—1
e ay ™ o, ifa; w fiand f; w a,

koo k=1
. a; w o, ifa; w prand f; - a,

K

Finally, we use the notation a; v @, to mean that a, can be derived from «;. In
other words,

% | fe
a, » a, if a; » a, for some k

10

Context Free Languages

Definition: Let G = (V, T, P,S) be a Then the language generated by G,
denoted by L(G) is the set

L(G) := {we T | Siilw}.

Thus, a language L is (called a context-free language or) if it is
generated by a context-free grammar.

Alternatively, a language L is said to be a CFL, if there exists a G such that

L=L(G).

11

Context Free Languages

Production rule examples

« L=1{0"1" | n>0}
« L={0"1" | m>n}
« L =1{0"1" | m,n >0}

CFL/CFGs and regular languages

Recall Chomsky Heirarchy

* The picture depicts regular languages as a
proper subset of context-free languages.

* Thus, all regular languages are also CFLs.

 What was the grammar that generated a
regular language?

* We can start with the DFA recognizing a
regular language.

* Then, extend the algebraic method.

13

recursively enumerable

context sensitive

context free

Converting DFAs into CFL

a,b a,b
ROTISEP

A — aA,A - bA,A — aB
B — bC
G=|{A,B,C,D,E}, {a,b}, C—->aD, ;. ,F
D — bE,
E— aE, E - bE,.E — ¢

Converting regular languages into CFL

a,b a,b
ROTISEP

M = (0, 2,0, qy, F): DFA for regular language L

Productions

Var@QIes Terrglnals { — ao(y, a) ‘ € Q,a€ Z} Start var

G= Q ” Z ” U{ —)g}a %
el

Converting regular languages into

A—>adA,A - bA,A — aB
B - bC
G=|{A,B,C,D,E}, {a,b} C—->aD, A
D — bE,
E—-aE E— bDEE — ¢

In regular languages:
* [erminals can only appear on one side of the production string

* Only one variable allowed in the production result

16

Converting regular languages into

A—>aA,A - bA,A — aB
B - bC
G=|{A,B,C,D,E}, {a,b} C—->aD, ; A
D — bE,
E—aE,E - bE,E — ¢

In regular languages:
* [erminals can only appear on one side of the production string

* Only one variable allowed in the production result

17

Closure Properties of

Let Gl — (Vl’ T, Pl’ Sl) and G2 — (Vz, T, Pz, Sz) be CFGs for Ll — L(Gl)

Simplifying assumption: V', N V, = ¢, that is, non-terminals are not shared
» CFLs are closed under union: L, U L, is a CFL.
« CFLs are closed under concatenation: L - L, is a CFL.

« CFLs are closed under Kleene star: [, CFL implies Lk* is a CFL.

18

Pushdown automata

Pushdown automata

The machine that recognizes CFGs

We established that {0"1"[n > 0} is a but not a regular language.

We have NFAs from regular languages. What can we add to enable them to
recognize ?

The key idea is that CFGs allow recursive definitions.
(ECE 220) What enables recursion in programming?

We need a stack!

20

Push-down Automata

The machine that generates CFGs

g e— 9
start sl 0,e—>0

1,0 - €

OSk
9> ¢

Each transition is formatted as:

<token read>, <stack pop> — <stack push>

21

Push-down Automata

The machine that generates CFGs

g e— 9%
start sl 0,e—>0

1,0 - €

o=I%
9> ¢

Does this machine recognize 00117

22

Push-down Automata

The machine that generates CFGs

g e— 9%
start sl 0,e—>0

1,0 - €

o=I%
9> ¢

Does this machine recognize 01017

23

Non-deterministic PDAs are more “powerful” than
deterministic PDAs. Hence, we’ll only be talking
about non-deterministic PDAs.

Formal Tuple Notation

Definition: A non-deterministic push-down automaton P = (Q, 2., 1,0, ,A)
IS a 6-tuple where

« () is a finite set whose elements are called states,
« 2. is a finite set called the input alphabet,

» | is a finite set called the stack alphabet,

e 0:0X2U e} XTI Ulel > X (Q X (I'U {8}))is the transition
function

e § IS the start state

« A is the set of accepting states

24

CFGs and PDAs

Convert a CFG to a PDA

Consider,
S—>05 |1 |¢€
What is a PDA for this?

Key idea: Recreate the string on the stack

* Every time we see a non-terminal, we replace it with one of the replacement
rules.

* Every time we see a terminal symbol, we take that symbol from the input.

* |f we reach a point where the stack and input are empty, then we accept the string.

25

CFGs and PDAs

Convert a CFG to a PDA

S->05]1 |e

e First let’s put in a $ to mark the end of the
string

* Also let’s put in the start symbol on the
stack.

 We can accept if nothing left to read and
stack is empty.

Stack —»

26

CFGs and PDAs

Convert a CFG to a PDA

S0S |1 |e

Next we want to add a loop for every non-terminal
symbol that replaces that non-terminal with the result.

Consider the rule: § — 08
» So we got to pop S the non-terminal and ...
e Add a non-terminal S to the stack.

 And add a terminal O to the stack.

Stack —»

27

CFGs and PDAs

Convert a CFG to a PDA

S—=051]11 Je
Is this state necessary?

* Recall generalized NFAs?

« Can follow same route to allow entire
strings to be pushed onto stack.

Stack —»

28

CFGs and PDAs

Convert a CFG to a PDA

S->05]1 |e
Is this state necessary?

* Recall generalized NFAs?

« Can follow same route to allow entire
strings to be pushed onto stack.

 But we are going to stick with PDAs.

Stack —»

29

CFGs and PDAs

Convert a CFG to a PDA

S—>05 |1 |¢

e Do the same thingfor$ — land $ — ¢

Stack —»

30

alf

Convert a CFG to a PDA

S—>05 |1 |¢

e |f we see a on the
stack, then we can cross that symbol from
the input.

Stack —»

31

CFGs and PDAs

Convert a CFG to a PDA

S—>05 |1 |¢

Study the automata to verify:
» Does this automata accept 0017

» Does this automata accept 0107?

Stack —»

32

Convert a CFG to a PDA

Another example

S — 071 |
@ T— T0 |
-5
() “—(gp) e Insert transitions for
S .y initialization, start symbol
| @ e & accept state

0,0 - e NP .
Ll>e e$oe ¢ * Add all production rules

R @ e Take care of terminals

Stack =————>

33

Convert a CFG to a PDA

With generalized PDAs

e Start with the grammar G = (V, T, P, S) and
consider the PDA

M = <{qS’ qp 45 Qa}’ T’ VU T’ » {qa})
 Define 0 as follows:

* |nsert transitions for initialization, start symbol &
accept state.

 For every productionrule A — fin P, add a
transition from g to g, consuming ¢, popping A

eSS — 1
and pushing /. e.T ¢
0,0 - ¢
. Yy Ll =€ ¢£%$—>¢
e For every terminal r € 1, add a transition from ¢

to g, consuming 7, popping f and pushing €.

34

Next class of languages

Canonical non-CFL

e L={a"b"c" | n>0}
* |ntuition why a PDA cannot recognize this language.
* This is In fact what we call a context-sensitive language.
* Corresponding automaton is called Linear Bounded Automaton (LBA)
 We will not discuss LBAs

 Next class: Turing Machines

35

