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Arithmetic expressions

• Here is one way to express these rules

• Expr → int

• Expr → Expr Op Expr

• Expr → ( Expr )

• Op → + | - | × | / 

5

This is called a production rule. It says “if you 
see Expr, you can replace it with Expr Op Expr.”

This one says “if you see Op, you can replace it 
with + or - or × or /
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A context-free grammar (or CFG) is a recursive 
set of rules that define a language.

Definition: 

A CFG is a quadruple  where G = (V, T, P, S)
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CFL/CFGs and regular languages 
Recall Chomsky Heirarchy

• The picture depicts regular languages as a 
proper subset of context-free languages. 

• Thus, all regular languages are also CFLs. 

• What was the grammar that generated a 
regular language?

• We can start with the DFA recognizing a 
regular language.

• Then, extend the algebraic method.
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Converting regular languages into CFL

: DFA for regular language M = (Q, Σ, δ, q0, F) L

G =
Variables⏞

Q ,
Terminals⏞

Σ ,

Productions
{q → aδ(q, a) ∣ q ∈ Q, a ∈ Σ}

⋃
q∈F

{q → ε} ,
Start var⏞q0
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Closure Properties of CFL

Let  be CFG for . Suppose . What is a 
grammar for ?

G1 = (V1, T1, P1, S1) L1 = L(G1) L = L*1
L
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We established that  is a CFL but not a regular language.  {0n1n |n → 0}
We have NFAs from regular languages. What can we add to enable them to 
recognize CFLs?

The key idea is that CFGs allow recursive definitions. 

(ECE 220) What enables recursion in programming?
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<token read>, <stack pop> → <stack push>
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Non-deterministic PDAs are more “powerful” than 
deterministic PDAs. Hence, we’ll only be talking 
about non-deterministic PDAs.
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What is a PDA for this? 

Key idea: Recreate the string on the stack

• Every time we see a non-terminal, we replace it with one of the replacement 
rules. 

• Every time we see a terminal symbol, we take that symbol from the input. 

• If we reach a point where the stack and input are empty, then we accept the string.
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Input

qs

ε, ε → $

q2
ε, ε → S

ql
ε, $ → ε

qa

Stack

• First let’s put in a  to mark the end of the 
string 

$

• Also let’s put in the start symbol on the 
stack.

• We can accept if nothing left to read and 
stack is empty.

S → 0S ∈ 1 ∈ α
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Next we want to add a loop for every non-terminal 
symbol that replaces that non-terminal with the result. 

Consider the rule:  S → 0S
• So we got to pop  the non-terminal and …S
• Add a non-terminal  to the stack. S
• And add a terminal  to the stack.0

ε, ε → S

ε, ε → $

ε, $ → ε
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q2

qa

ε, S → S

qp21

ε, ε → 0

Input Stack
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Is this state necessary?

• Recall generalized NFAs?

• Can follow same route to allow entire 
strings to be pushed onto stack. 

• But we are going to stick with PDAs. 

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

ε, S → 0S

Input Stack

S → 0S ∈ 1 ∈ α
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ε, S → 1
ε, S → ε

ε, ε → S

ε, ε → $

ε, $ → ε

qs

q2

ql

qa

qp21

ε, S → S

ε, ε → 0

• Do the same thing for  and  S → 1 S → ε

Input Stack

S → 0S ∈ 1 ∈ ε
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qs

Example from Kani Archive


