
Context-sensitive and decidable 
languages

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Context Sensitive Language
Definition 

A language ￼  is said to be context-sensitive if 
there exists a context-sensitive grammar ￼ , 
such that ￼ . 

L
G

L = L(G)

￼2

regular

context free

context sensitive

recursively enumerable



Context Sensitive Grammar (CSG)
Definition

A               is a quadruple ￼ 


• ￼  is a finite set of non-terminal symbols. 


• ￼  is a finite set of terminal symbols (alphabet).


• ￼  is a finite set of productions, each of the form ￼  where ￼  and ￼  
is a string in ￼  .


• ￼  is a start symbol.

G = (V, T, P, S)

V

T

P A → α A ∈ V α
(V ∪ T)*

S ∈ V
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Context Sensitive Grammar (CSG)
Definition

A               is a quadruple ￼ 


• ￼  is a finite set of non-terminal symbols. 


• ￼  is a finite set of terminal symbols (alphabet).


• ￼  is a finite set of productions, each of the form ￼  where ￼  and ￼  are 
strings in ￼ .


• ￼  is a start symbol.

G = (V, T, P, S)

V

T

P α → β α β
(V ∪ T)*

S ∈ V
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Example formally for completeness
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￼ 


￼ 


￼ 


￼

L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

Context Sensitive Grammar (CSG)

￼G = {S, A, B}, {a, b, c},

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

, S



Context Sensitive Language
Example formally for completeness
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￼ 


￼ 


￼

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

￼S ⇝ aAbc ⇝ abAc ⇝ abBbcc ⇝ aBbbcc

￼⇝ aaAbbcc ⇝ aabAbcc ⇝ aabbAcc

￼⇝ aabbBbccc ⇝ aabBbbccc

￼⇝ aaBbbbccc ⇝ aaabbbccc

L = {anbncn |n ≥ 1}
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Context Sensitive Language
Another solution

L = {anbncn |n ≥ 1}



Recursively enumerable  
(Turing Recognizable) 
language
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regular

context free

context sensitive

recursively enumerable



• Is there a kind of computer that can accept any language or compute any 
function? 


• Recall counting argument. Set of all languages: ￼  is 


(a) countably infinite   (b) uncountably infinite


• Set of all programs: ￼ is


(a) countably infinite   (b) uncountably infinite


• Conclusion: There are languages for which there are no programs.

{L |L ⊆ {0,1}*}

{P |P is a finite length computer program}

“Most general” computer
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• We may need unbounded memory to 
recognize context-free languages. 


• E.g. ￼  requires 
unbounded counting. 


How do we model a computing 
device that has unbounded memory? 


OR


How do we model a computing 
device that can recognize as many 
languages as possible?

{anbn |n ∈ ℕ}
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All Languages

Regular  
Languages CFLs

Languages 
recognizable 
by any feasible 
computing 
machine

“Most general” computer



Turing Machine
A brief history 
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• In March 1936, Alan Turing (aged 
23!) published a paper detailing 
the a-machine (for automatic 
machine), an automaton for 
computing on real numbers.


• They’re now more popularly 
referred to as Turing machines 
in his honor.


• Watch: The Imitation Game!

https://www.imdb.com/title/tt2084970/


Turing Machine 

• Input written on (infinite) one sided tape. 


• Special blank characters. 


• Finite state control (similar to DFA).


• Read character under head, write 
character out, move the head right or 
left (or stay).
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￼q1

￼q2 ￼qn

￼q1 ￼q0

￼q3 …

Finite control

Reading and Writing Head 
(moves in both directions)

b b a a a a …… Input/Output Tape



• Church-Turing thesis: TMs are the most general computing devices. So far, no 
counter-example. 


• Every TM can be represented as a string. 


• The existence of a Universal Turing Machine, which is the model/inspiration 
for stored program computing. UTM can simulate any TM!


• Implications for what can be computed and what cannot be computed

Turing Machine 
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High level goals



Example

￼14

Computers exist because we are lazy… so Stanford’s CS 103 to the rescue.

https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/lectures/20/Slides20.pdf


A Turing machine is a 7-tuple ￼  where


• ￼  is a finite set of states


• ￼  is a finite set called the input alphabet


• ￼  is a finite set called the tape alphabet


• ￼ : ￼ : Transition function.


• ￼  is called the initial state.


• ￼  , ￼  are the accepting state and rejecting state, respectively.


• ￼   a special symbol for blank on the tape

(Q, Σ, Γ, δ, q0, qacc, qrej)
Q

Σ

Γ

δ Q × Γ → Q × Γ × {L, R, S}

q0 ∈ Q

qacc ∈ Q qrej ∈ Q

⊔

Turing Machine 
Formal definition
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Turing Machine 
Transition function 

￼δ : Q × Γ → Q × Γ × {L, R, S}
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From state ￼ , on reading ￼ :  


• go to state ￼ 


• write ￼ 


• move head Left 

• missing transitions lead to BSOD

q a

p

b

symbol  
scanned

current 
state

new 
state

symbol 
to write

Direction to 
move on tape

￼                 δ (q, a) = (p, b, L)



More example(s)
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Same link as last time again



Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt. 


• Need to distinguish cases, related to “deciders” (partial and total).  


• Recursively enumerable (aka RE) languages 


• ￼  


• Recursive/decidable languages 


• ￼

L = {L(M) ∣ M some Turing machine}

L = {L(M) ∣ M some Turing machine that halts on all inputs}

￼18



• A total decider is a TM which will always halt in an accept or reject state. 


• Recursive languages are called decidable language precisely because they 
have total deciders. 


• A partial decider is a TM, which if given string in its language, will reach an 
accept state.


• If given a string that is not in its language, it could loop forever. 


• Recursively enumerable languages are ones for which a partial decider 
exists. 
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Languages defined by a Turing machine
Recursive vs. Recursively Enumerable



Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions: 


• What languages are RE? 


• Which are recursive? 


• What is the difference? 


• What makes a language 
decidable?
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• A semi-decidable problem 
(equivalent of recursively 
enumerable) could be: 


• Decidable - equivalent of 
recursive (TM always accepts or 
rejects).


• Undecidable - Problem is not 
recursive 


• There are also undecidable problems 
that are not recursively enumerable!

More on these closer 
to end of semester. 



Linear Bounded Automata

• We skipped LBAs


• They can be thought of as restricted 
Turing Machines. 


• Tape used grows linearly with size of 
input 


• (Nondeterministic) LBA can recognize all 
context-sensitive languages.
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a a b b c c

￼q1

￼q2 ￼qn

￼q1 ￼q0

￼q3 …

Finite control

Reading and Writing Head 
(moves in both directions)

Relation to TMs
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Grammar Languages Production Rules Automation Examples

Type-0 Turing machine γ → α  (no constraints) Turing Machines  L =  { w | w is a TM 
which halts }

Type-1 Context-sensitive αAβ → αγβ Linear Bounded Automata L = { anbncn  | n > 0 }

Type-2 Context-free A → α Pushdown Automata L = { anbn  | n > 0 }

Type-3 Regular A → aB Non-determinstic Finite 
Automata L = { an  | n > 0 }

Wrap up … 
… the four-week tour of Models of Computation.



Next class
Universal Turing Machines

• Theorem (Turing, 1936): There is a Turing Machine, called the Universal 
Turing Machine, that, when run on an input of the form ￼  where ￼  is a 
TM and ￼  is a string, simulates ￼  running on ￼  and does whatever ￼  does 
on ￼  — accepts, rejects, loops. 


• Question for the weekend: Recall that the language of a TM is the set of 
strings it accepts.  

What is the language of a UTM? 

⟨M, w⟩ M
w M w M

w
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