
Context-sensitive and decidable
languages

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Context Sensitive Language
Definition

A language ￼ is said to be context-sensitive if
there exists a context-sensitive grammar ￼ ,
such that ￼ .

L
G

L = L(G)

￼2

regular

context free

context sensitive

recursively enumerable

Context Sensitive Grammar (CSG)
Definition

A is a quadruple ￼

• ￼ is a finite set of non-terminal symbols.

• ￼ is a finite set of terminal symbols (alphabet).

• ￼ is a finite set of productions, each of the form ￼ where ￼ and ￼
is a string in ￼ .

• ￼ is a start symbol.

G = (V, T, P, S)

V

T

P A → α A ∈ V α
(V ∪ T)*

S ∈ V

￼3

Context Sensitive Grammar (CSG)
Definition

A is a quadruple ￼

• ￼ is a finite set of non-terminal symbols.

• ￼ is a finite set of terminal symbols (alphabet).

• ￼ is a finite set of productions, each of the form ￼ where ￼ and ￼ are
strings in ￼ .

• ￼ is a start symbol.

G = (V, T, P, S)

V

T

P α → β α β
(V ∪ T)*

S ∈ V

￼4

Example formally for completeness

￼5

￼

￼

￼

￼

L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

Context Sensitive Grammar (CSG)

￼G = {S, A, B}, {a, b, c},

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

, S

Context Sensitive Language
Example formally for completeness

￼6

￼

￼

￼

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

￼S ⇝ aAbc ⇝ abAc ⇝ abBbcc ⇝ aBbbcc

￼⇝ aaAbbcc ⇝ aabAbcc ⇝ aabbAcc

￼⇝ aabbBbccc ⇝ aabBbbccc

￼⇝ aaBbbbccc ⇝ aaabbbccc

L = {anbncn |n ≥ 1}

￼7

Context Sensitive Language
Another solution

L = {anbncn |n ≥ 1}

Recursively enumerable
(Turing Recognizable)
language

￼8

regular

context free

context sensitive

recursively enumerable

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: ￼ is

(a) countably infinite (b) uncountably infinite

• Set of all programs: ￼ is

(a) countably infinite (b) uncountably infinite

• Conclusion: There are languages for which there are no programs.

{L |L ⊆ {0,1}*}

{P |P is a finite length computer program}

“Most general” computer

￼9

• We may need unbounded memory to
recognize context-free languages.

• E.g. ￼ requires
unbounded counting.

How do we model a computing
device that has unbounded memory?

OR

How do we model a computing
device that can recognize as many
languages as possible?

{anbn |n ∈ ℕ}

￼10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

Turing Machine
A brief history

￼11

• In March 1936, Alan Turing (aged
23!) published a paper detailing
the a-machine (for automatic
machine), an automaton for
computing on real numbers.

• They’re now more popularly
referred to as Turing machines
in his honor.

• Watch: The Imitation Game!

https://www.imdb.com/title/tt2084970/

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

• Read character under head, write
character out, move the head right or
left (or stay).

￼12

￼q1

￼q2 ￼qn

￼q1 ￼q0

￼q3 …

Finite control

Reading and Writing Head
(moves in both directions)

b b a a a a …… Input/Output Tape

• Church-Turing thesis: TMs are the most general computing devices. So far, no
counter-example.

• Every TM can be represented as a string.

• The existence of a Universal Turing Machine, which is the model/inspiration
for stored program computing. UTM can simulate any TM!

• Implications for what can be computed and what cannot be computed

Turing Machine

￼13

High level goals

Example

￼14

Computers exist because we are lazy… so Stanford’s CS 103 to the rescue.

https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/lectures/20/Slides20.pdf

A Turing machine is a 7-tuple ￼ where

• ￼ is a finite set of states

• ￼ is a finite set called the input alphabet

• ￼ is a finite set called the tape alphabet

• ￼ : ￼ : Transition function.

• ￼ is called the initial state.

• ￼ , ￼ are the accepting state and rejecting state, respectively.

• ￼ a special symbol for blank on the tape

(Q, Σ, Γ, δ, q0, qacc, qrej)
Q

Σ

Γ

δ Q × Γ → Q × Γ × {L, R, S}

q0 ∈ Q

qacc ∈ Q qrej ∈ Q

⊔

Turing Machine
Formal definition

￼15

Turing Machine
Transition function

￼δ : Q × Γ → Q × Γ × {L, R, S}

￼16

From state ￼ , on reading ￼ :

• go to state ￼

• write ￼

• move head Left

• missing transitions lead to BSOD

q a

p

b

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

￼ δ (q, a) = (p, b, L)

More example(s)

￼17

Same link as last time again

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

• Recursively enumerable (aka RE) languages

• ￼

• Recursive/decidable languages

• ￼

L = {L(M) ∣ M some Turing machine}

L = {L(M) ∣ M some Turing machine that halts on all inputs}

￼18

• A total decider is a TM which will always halt in an accept or reject state.

• Recursive languages are called decidable language precisely because they
have total deciders.

• A partial decider is a TM, which if given string in its language, will reach an
accept state.

• If given a string that is not in its language, it could loop forever.

• Recursively enumerable languages are ones for which a partial decider
exists.

￼19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

￼20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

• Decidable - equivalent of
recursive (TM always accepts or
rejects).

• Undecidable - Problem is not
recursive

• There are also undecidable problems
that are not recursively enumerable!

More on these closer
to end of semester.

Linear Bounded Automata

• We skipped LBAs

• They can be thought of as restricted
Turing Machines.

• Tape used grows linearly with size of
input

• (Nondeterministic) LBA can recognize all
context-sensitive languages.

￼21

a a b b c c

￼q1

￼q2 ￼qn

￼q1 ￼q0

￼q3 …

Finite control

Reading and Writing Head
(moves in both directions)

Relation to TMs

￼22

Grammar Languages Production Rules Automation Examples

Type-0 Turing machine γ → α (no constraints) Turing Machines L = { w | w is a TM
which halts }

Type-1 Context-sensitive αAβ → αγβ Linear Bounded Automata L = { anbncn | n > 0 }

Type-2 Context-free A → α Pushdown Automata L = { anbn | n > 0 }

Type-3 Regular A → aB Non-determinstic Finite
Automata L = { an | n > 0 }

Wrap up …
… the four-week tour of Models of Computation.

Next class
Universal Turing Machines

• Theorem (Turing, 1936): There is a Turing Machine, called the Universal
Turing Machine, that, when run on an input of the form ￼ where ￼ is a
TM and ￼ is a string, simulates ￼ running on ￼ and does whatever ￼ does
on ￼ — accepts, rejects, loops.

• Question for the weekend: Recall that the language of a TM is the set of
strings it accepts.

What is the language of a UTM?

⟨M, w⟩ M
w M w M

w

￼23

