
Context-sensitive and decidable
languages

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Context Sensitive Language
Definition

A language is said to be context-sensitive if
there exists a context-sensitive grammar ,
such that .

L
G

L = L(G)

 2

regular

context free

context sensitive

recursively enumerable

Context Sensitive Grammar (CSG)
Definition

A is a quadruple

• is a finite set of non-terminal symbols.

• is a finite set of terminal symbols (alphabet).

• is a finite set of productions, each of the form where and
is a string in .

• is a start symbol.

G = (V, T, P, S)

V

T

P A → α A ∈ V α
(V ∪ T)*

S ∈ V

 3

Context Sensitive Grammar (CSG)
Definition

A is a quadruple

• is a finite set of non-terminal symbols.

• is a finite set of terminal symbols (alphabet).

• is a finite set of productions, each of the form where and are
strings in .

• is a start symbol.

G = (V, T, P, S)

V

T

P α → β α β
(V ∪ T)*

S ∈ V

 4

Example formally for completeness

 5

L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

Context Sensitive Grammar (CSG)

 G = {S, A, B}, {a, b, c},

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

, S

Context Sensitive Language
Example formally for completeness

 6

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

 S ⇝ aAbc ⇝ abAc ⇝ abBbcc ⇝ aBbbcc

 ⇝ aaAbbcc ⇝ aabAbcc ⇝ aabbAcc

 ⇝ aabbBbccc ⇝ aabBbbccc

 ⇝ aaBbbbccc ⇝ aaabbbccc

L = {anbncn |n ≥ 1}

 7

Context Sensitive Language
Another solution

L = {anbncn |n ≥ 1}

Recursively enumerable
(Turing Recognizable)
language

 8

regular

context free

context sensitive

recursively enumerable

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: is

(a) countably infinite (b) uncountably infinite

• Set of all programs: is

(a) countably infinite (b) uncountably infinite

• Conclusion: There are languages for which there are no programs.

{L |L ⊆ {0,1}*}

{P |P is a finite length computer program}

“Most general” computer

 9

• We may need unbounded memory to
recognize context-free languages.

• E.g. requires
unbounded counting.

How do we model a computing
device that has unbounded memory?

OR

How do we model a computing
device that can recognize as many
languages as possible?

{anbn |n ∈ ℕ}

 10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

Turing Machine
A brief history

 11

• In March 1936, Alan Turing (aged
23!) published a paper detailing
the a-machine (for automatic
machine), an automaton for
computing on real numbers.

• They’re now more popularly
referred to as Turing machines
in his honor.

• Watch: The Imitation Game!

https://www.imdb.com/title/tt2084970/

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

• Read character under head, write
character out, move the head right or
left (or stay).

 12

 q1

 q2 qn

 q1 q0

 q3 …

Finite control

Reading and Writing Head
(moves in both directions)

b b a a a a …… Input/Output Tape

• Church-Turing thesis: TMs are the most general computing devices. So far, no
counter-example.

• Every TM can be represented as a string.

• The existence of a Universal Turing Machine, which is the model/inspiration
for stored program computing. UTM can simulate any TM!

• Implications for what can be computed and what cannot be computed

Turing Machine

 13

High level goals

Example

 14

Computers exist because we are lazy… so Stanford’s CS 103 to the rescue.

https://web.stanford.edu/class/archive/cs/cs103/cs103.1202/lectures/20/Slides20.pdf

A Turing machine is a 7-tuple where

• is a finite set of states

• is a finite set called the input alphabet

• is a finite set called the tape alphabet

• : : Transition function.

• is called the initial state.

• , are the accepting state and rejecting state, respectively.

• a special symbol for blank on the tape

(Q, Σ, Γ, δ, q0, qacc, qrej)
Q

Σ

Γ

δ Q × Γ → Q × Γ × {L, R, S}

q0 ∈ Q

qacc ∈ Q qrej ∈ Q

⊔

Turing Machine
Formal definition

 15

Turing Machine
Transition function

 δ : Q × Γ → Q × Γ × {L, R, S}

 16

From state , on reading :

• go to state

• write

• move head Left

• missing transitions lead to BSOD

q a

p

b

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

 δ (q, a) = (p, b, L)

More example(s)

 17

Same link as last time again

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

• Recursively enumerable (aka RE) languages

•

• Recursive/decidable languages

•

L = {L(M) ∣ M some Turing machine}

L = {L(M) ∣ M some Turing machine that halts on all inputs}

 18

• A total decider is a TM which will always halt in an accept or reject state.

• Recursive languages are called decidable language precisely because they
have total deciders.

• A partial decider is a TM, which if given string in its language, will reach an
accept state.

• If given a string that is not in its language, it could loop forever.

• Recursively enumerable languages are ones for which a partial decider
exists.

 19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

 20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

• Decidable - equivalent of
recursive (TM always accepts or
rejects).

• Undecidable - Problem is not
recursive

• There are also undecidable problems
that are not recursively enumerable!

More on these closer
to end of semester.

Linear Bounded Automata

• We skipped LBAs

• They can be thought of as restricted
Turing Machines.

• Tape used grows linearly with size of
input

• (Nondeterministic) LBA can recognize all
context-sensitive languages.

 21

a a b b c c

 q1

 q2 qn

 q1 q0

 q3 …

Finite control

Reading and Writing Head
(moves in both directions)

Relation to TMs

 22

Grammar Languages Production Rules Automation Examples

Type-0 Turing machine γ → α (no constraints) Turing Machines L = { w | w is a TM
which halts }

Type-1 Context-sensitive αAβ → αγβ Linear Bounded Automata L = { anbncn | n > 0 }

Type-2 Context-free A → α Pushdown Automata L = { anbn | n > 0 }

Type-3 Regular A → aB Non-determinstic Finite
Automata L = { an | n > 0 }

Wrap up …
… the four-week tour of Models of Computation.

Next class
Universal Turing Machines

• Theorem (Turing, 1936): There is a Turing Machine, called the Universal
Turing Machine, that, when run on an input of the form where is a
TM and is a string, simulates running on and does whatever does
on — accepts, rejects, loops.

• Question for the weekend: Recall that the language of a TM is the set of
strings it accepts.

What is the language of a UTM?

⟨M, w⟩ M
w M w M

w

 23

