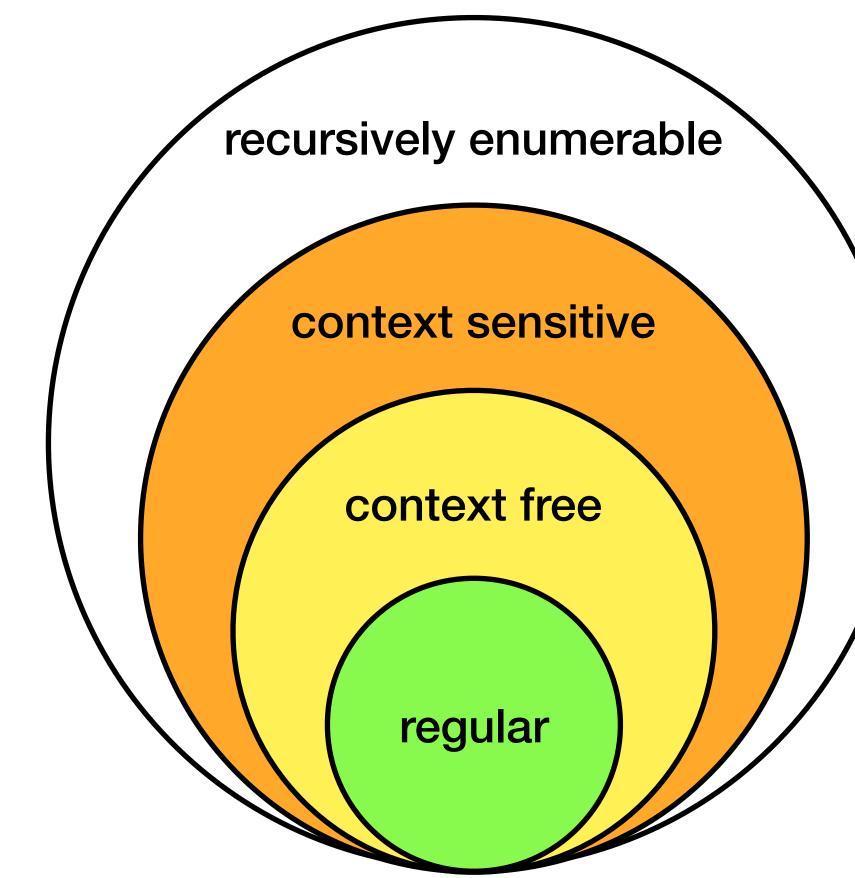
Context-sensitive and decidable languages Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Context Sensitive Language Definition

A language L is said to be context-sensitive if there exists a context-sensitive grammar G, such that L = L(G).



Context Sensitive Grammar (CSG) Definition

A CFG is a quadruple G = (V, T, P, S)v - s finite set of non-terminals T -> (r r r terminals S -> Start cymbol.

 $P \rightarrow P \subseteq V \times (V \cup T) \xrightarrow{*} v \rightarrow d \qquad d \in (V \cup T)^{*}$

Context Sensitive Grammar (CSG) Definition

A CFG is a quadruple G = (V, T, P, S)

- V is a finite set of *non-terminal symbols*.
- T is a finite set of terminal symbols (alphabet).
- *P* is a finite set of *productions*, each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$.
- $S \in V$ is a start symbol.

Context Sensitive Grammar (CSG) Definition

is a quadruple G = (V, T, P, S)

- V is a finite set of *non-terminal symbols*.
- T is a finite set of *terminal symbols* (alphabet).
- P is a finite set of *productions*, each of the form $\alpha \rightarrow \beta$ where α and β are strings in $(V \cup T)^*$.
- $S \in V$ is a start symbol.

 $L = \{a^n b^n c^n \mid n \ge 1\}$

 $L = \{a^n b^n c^n | n \ge 1\}$ $V = \{S, A, B\}$

- $L = \{a^{n}b^{n}c^{n} | n \ge 1\}$ A6 - 5 5A $V = \{S, A, B\}$ Ac - S Bbcc $T = \{a, b, c\}$ 6B-2 Bb

 $S \rightarrow abc | aAbC$

as > aa

a bBbcc abbbcc aa bb ce

abAc.

$$L = \{a^{n}b^{n}c^{n} | n \ge 1\}$$

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$P = \begin{cases} S \rightarrow abc | aAbc, \\ Ab \rightarrow bA, \\ Ac \rightarrow Bbcc, \\ bB \rightarrow Bb, \\ aB \rightarrow aa | aaA \end{cases}$$

$$L = \{a^{n}b^{n}c^{n} | n \ge 1\}$$

$$V = \{S, A, B\}$$

$$T = \{a, b, c\}$$

$$P = \begin{cases} S \rightarrow abc | aAbc, \\ Ab \rightarrow bA, \\ Ac \rightarrow Bbcc, \\ bB \rightarrow Bb, \\ aB \rightarrow aa | aaA \end{cases}$$

 $G = \left\{ \{S, A, B\}, \{a, b, c\}, \begin{cases} S \to abc \mid aAbc, \\ Ab \to bA, \\ Ac \to Bbcc, \\ bB \to Bb, \\ aB \to aa \mid aaA \end{cases}, S \right\}$

Context Sensitive Language Example formally for completeness

 $V = \{S, A, B\}$ $T = \{a, b, c\}$ $P = \begin{cases} S \rightarrow abc \mid aAbc, \\ Ab \rightarrow bA, \\ Ac \rightarrow Bbcc, \\ bB \rightarrow Bb, \end{cases}$ $aB \rightarrow aa \mid aaA \mid$

$L = \{a^n b^n c^n \mid n \ge 1\}$

Context Sensitive Language Example formally for completeness

 $V = \{S, A, B\}$ $T = \{a, b, c\}$ $P = \begin{cases} S \rightarrow abc \mid aAbc, \\ Ab \rightarrow bA, \\ Ac \rightarrow Bbcc, \\ bB \rightarrow Bb, \end{cases}$ $aB \rightarrow aa \mid aaA \mid$

$L = \{a^n b^n c^n \mid n \ge 1\}$

 $S \rightsquigarrow aAbc \rightsquigarrow abAc \rightsquigarrow abBbcc \rightsquigarrow aBbbcc$

 \rightarrow aaAbbcc \rightarrow aabAbcc \rightarrow aabbAcc

→ aabbBbccc → aabBbbccc

 \rightsquigarrow aaBbbbccc \rightsquigarrow aaabbbccc

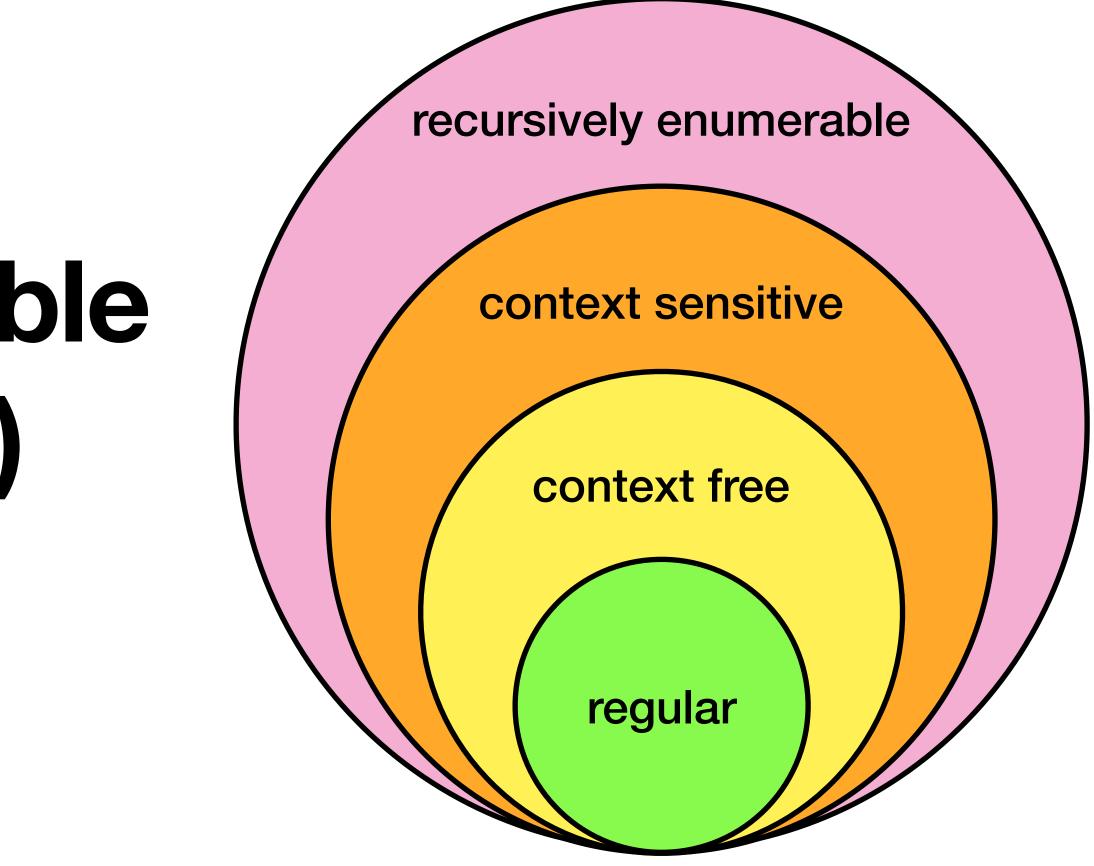
Context Sensitive Language Another solution

S-, atu (astu at-s ab 60 > bcNTS TU 67 > 66 50 -> 60 こひっこ

 $L = \{a^n b^n c^n \mid n \ge 1\}$ atch + aby + abc $astu \rightarrow aatutu$ aab UTV ₹ ∕ Apologies fou tro "colou aabtuu coding", Hand to do it on the fly but leaving if inchanged so it matches the seconding aabbuu aabbeu aa66cc

Recursively enumerable (Turing Recognizable) language

Recursively enumerable (Turing Recognizable) language



 Is there a kind of computer that car function?

• Is there a kind of computer that can accept any language or compute any

- Is there a kind of computer that can accept any language or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is

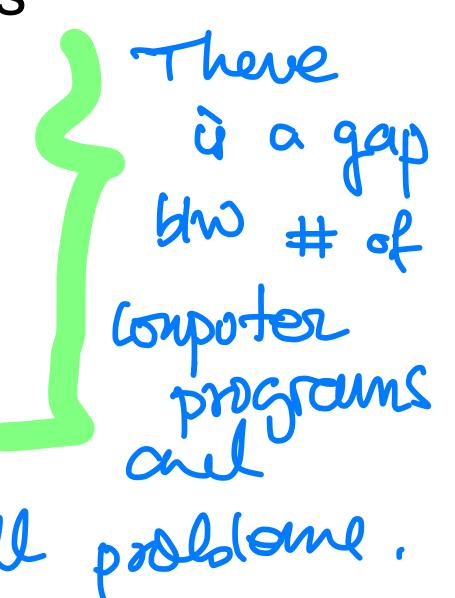
- Is there a kind of computer that can accept any language or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is

(a) countably infinite (b) uncountably infinite

- Is there a kind of computer that can accept any language or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is
- Set of all programs: $\{P \mid P \text{ is a finite length computer program}\}$ is
- (a) countably infinite (b) uncountably infinite

- Is there a kind of computer that can accept any language or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is
 - (a) countably infinite (b) uncountably infinite
- Set of all programs: $\{P \mid P \text{ is a finite length computer program}\}$ is

(a) countably infinite (b) uncountably infinite



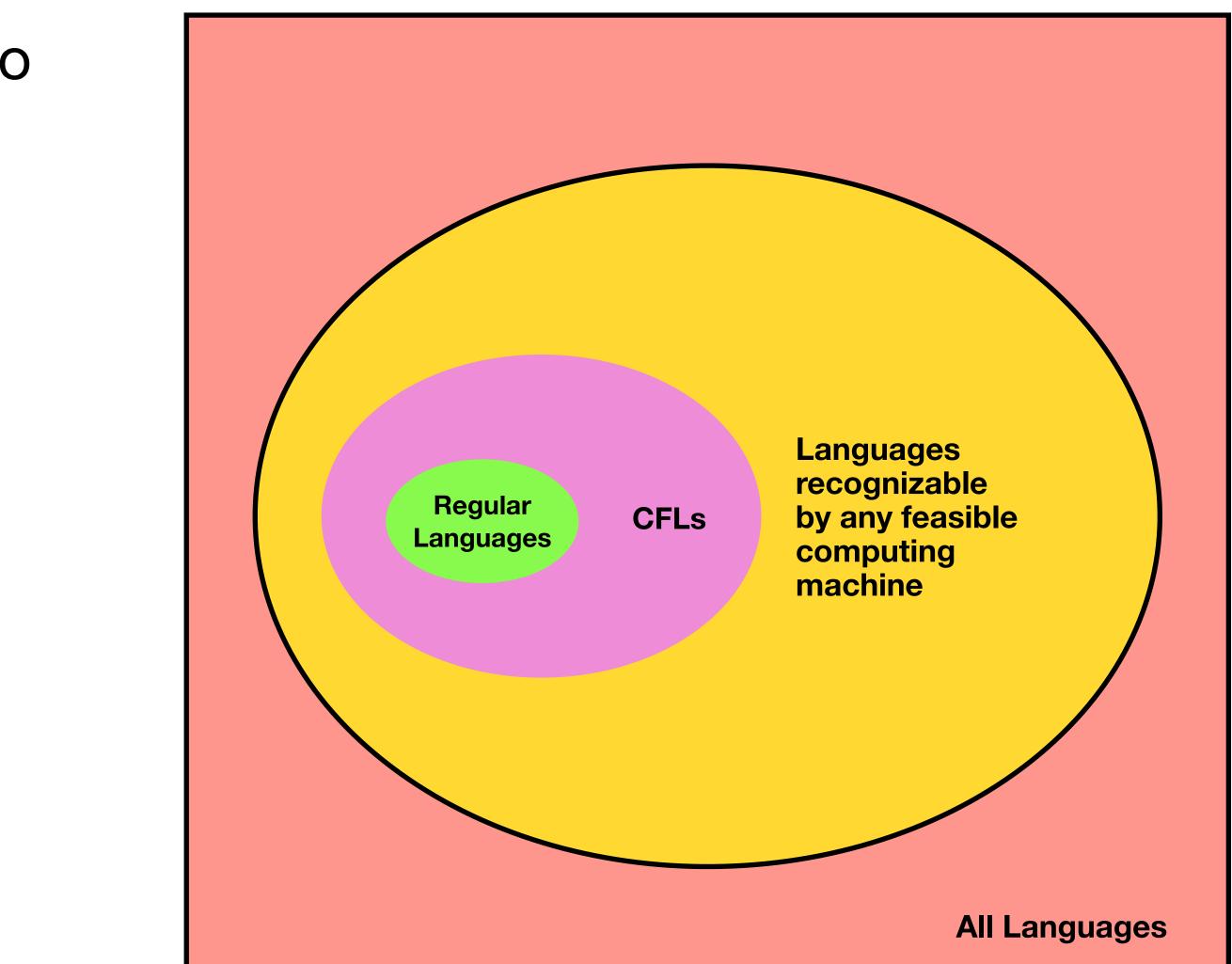
- Is there a kind of computer that can accept any language or compute any function?
- Recall counting argument. Set of all languages: $\{L \mid L \subseteq \{0,1\}^*\}$ is (a) countably infinite (b) uncountably infinite
- Set of all programs: $\{P \mid P \text{ is a finite length computer program}\}$ is

- Conclusion: There are languages for which there are no programs.
- (a) countably infinite (b) uncountably infinite

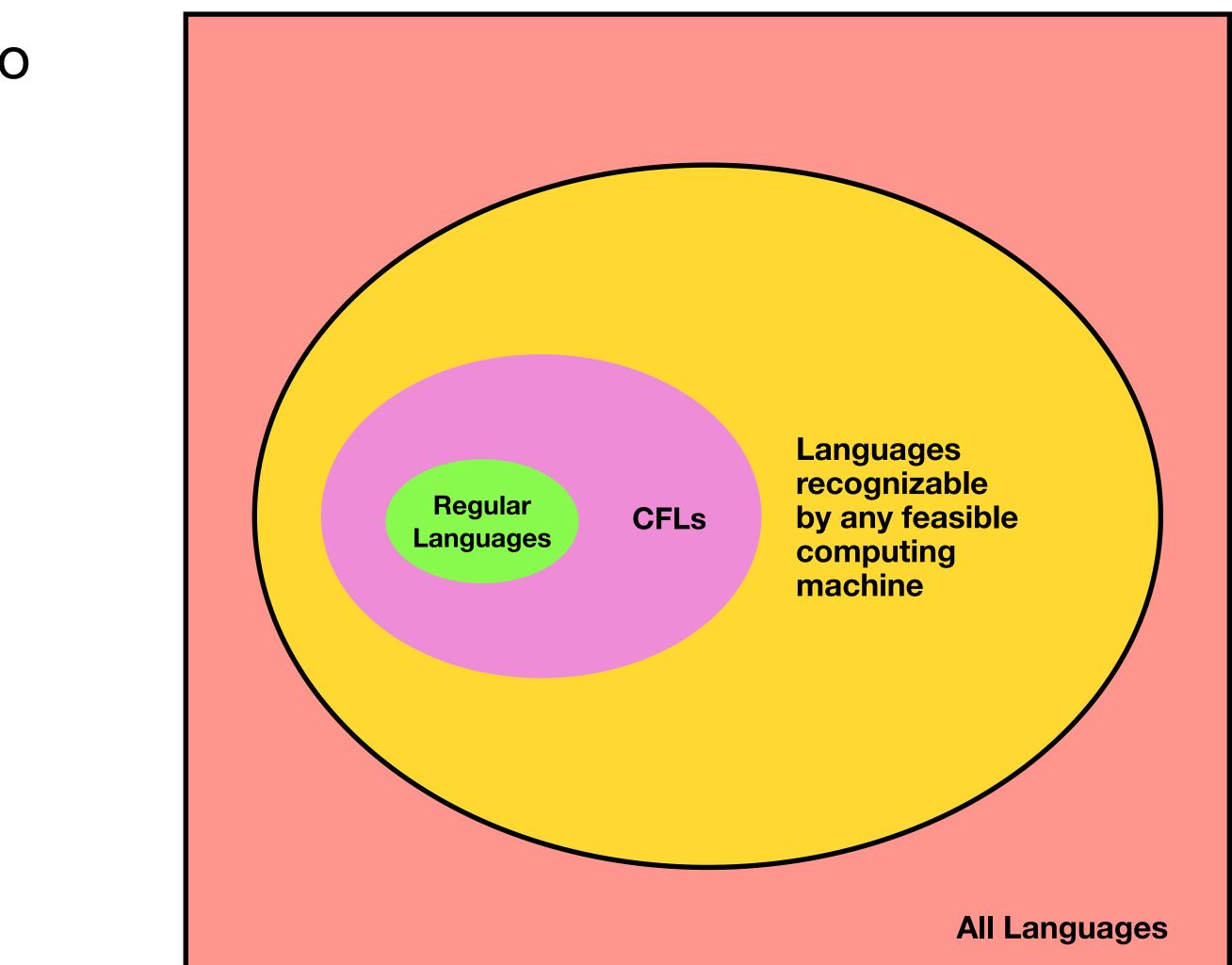
- We may need unbounded memory to recognize context-free languages.

10

• We may need unbounded memory to recognize context-free languages.

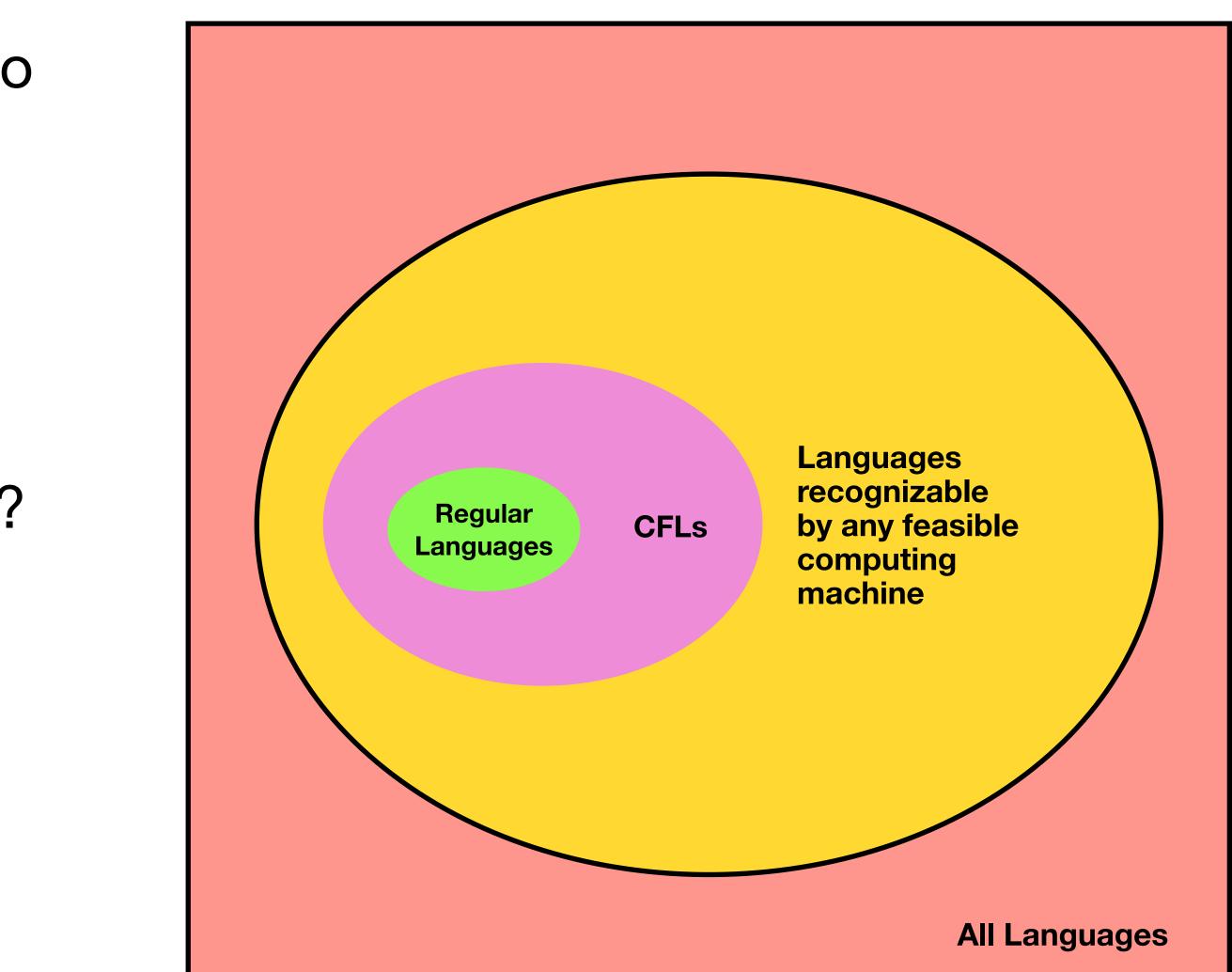


- We may need unbounded memory to recognize context-free languages.
 - E.g. $\{a^nb^n | n \in \mathbb{N}\}$ requires unbounded counting.



- We may need unbounded memory to recognize context-free languages.
 - E.g. $\{a^nb^n \mid n \in \mathbb{N}\}$ requires unbounded counting.

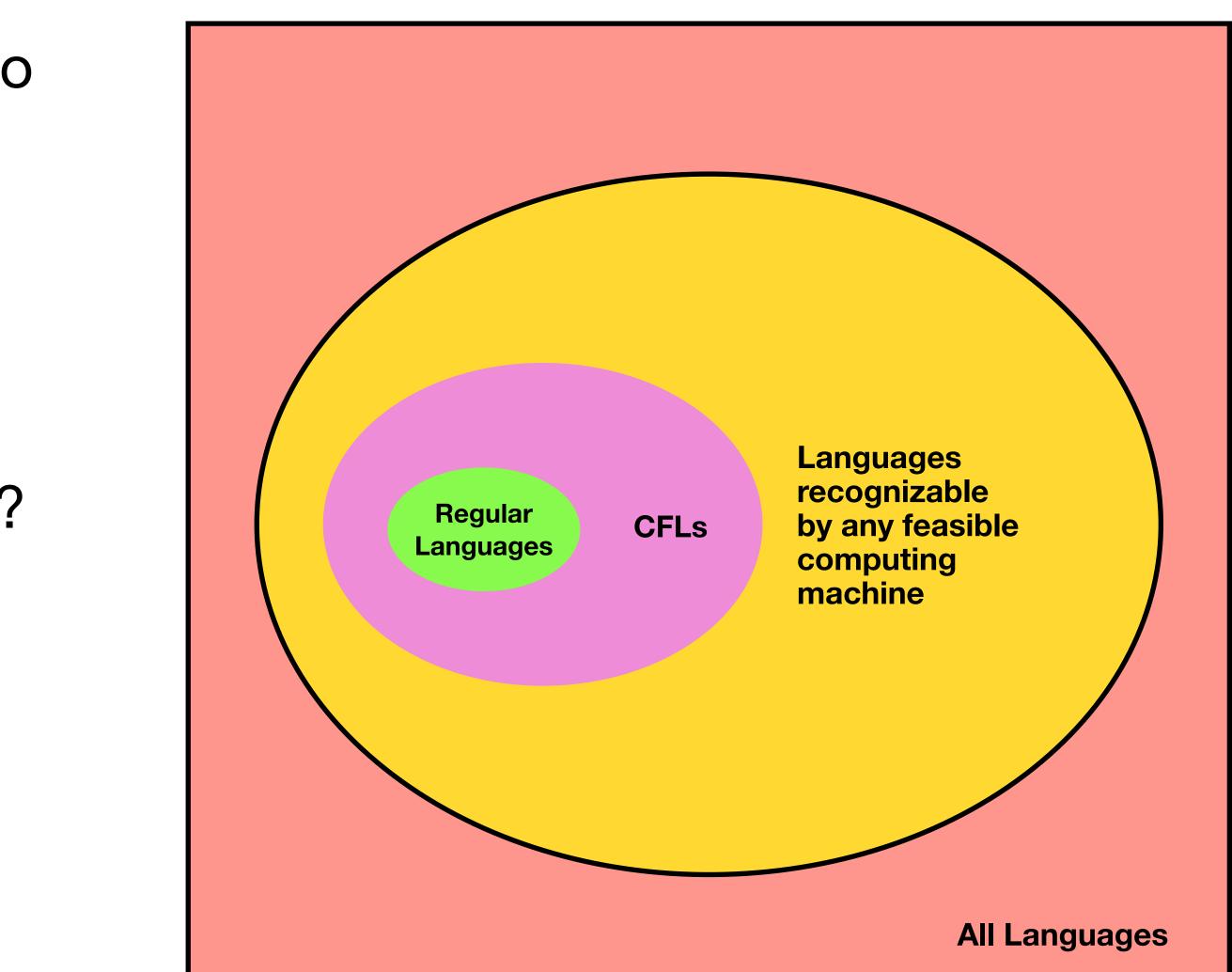
How do we model a computing device that has unbounded memory?



- We may need unbounded memory to recognize context-free languages.
 - E.g. $\{a^nb^n \mid n \in \mathbb{N}\}$ requires unbounded counting.

How do we model a computing device that has unbounded memory?

OR

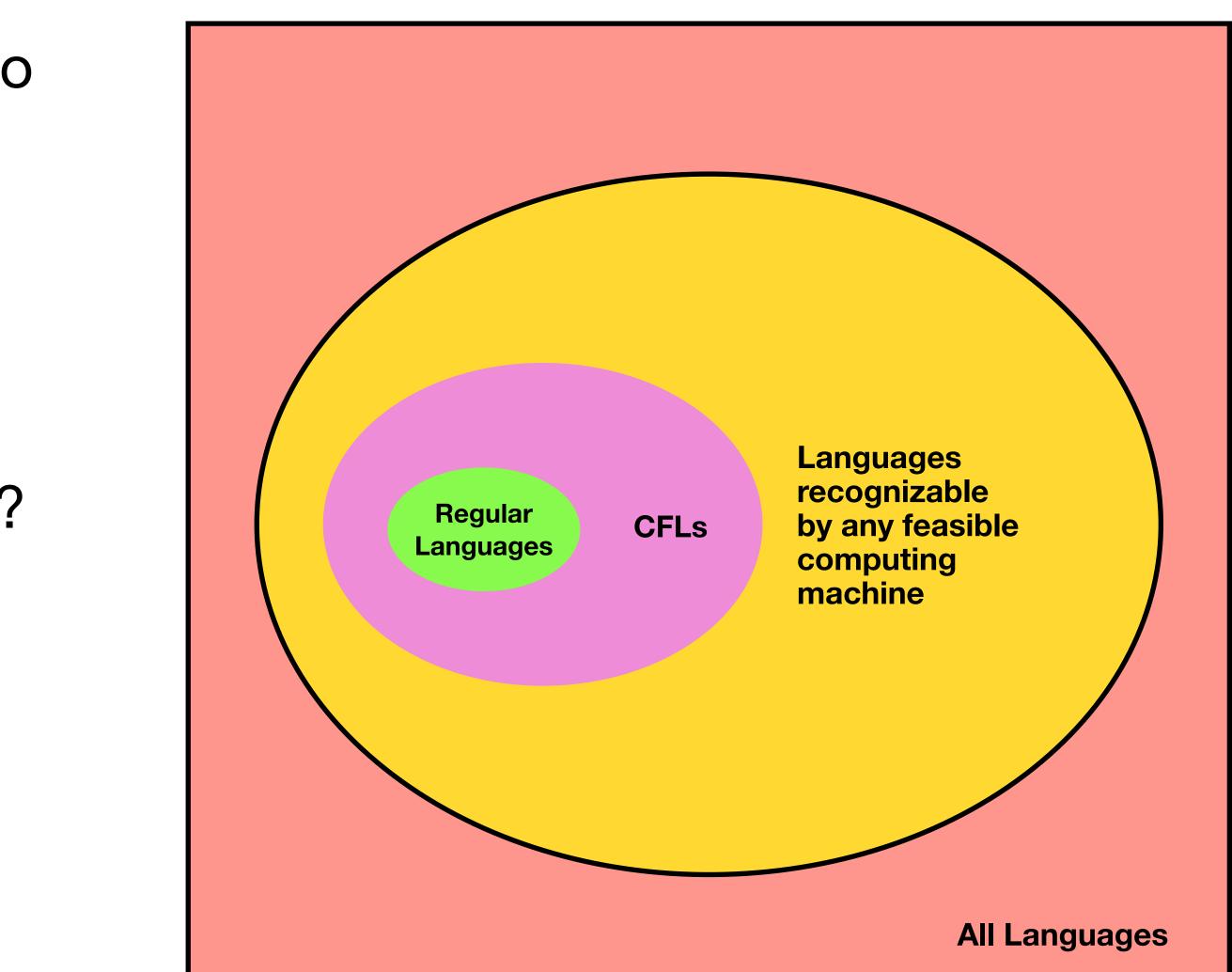


- We may need unbounded memory to recognize context-free languages.
 - E.g. $\{a^nb^n \mid n \in \mathbb{N}\}$ requires unbounded counting.

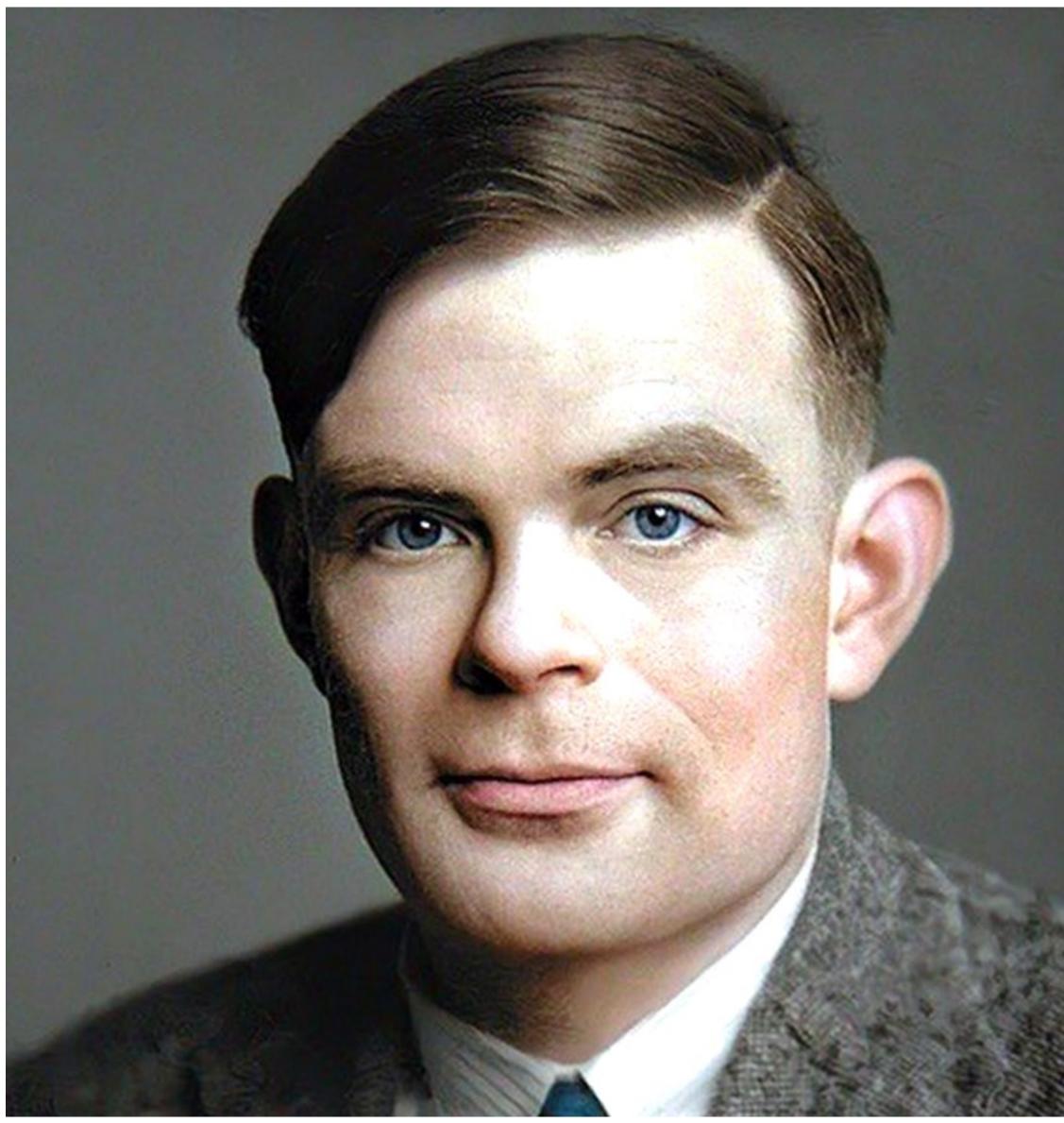
How do we model a computing device that has unbounded memory?

OR

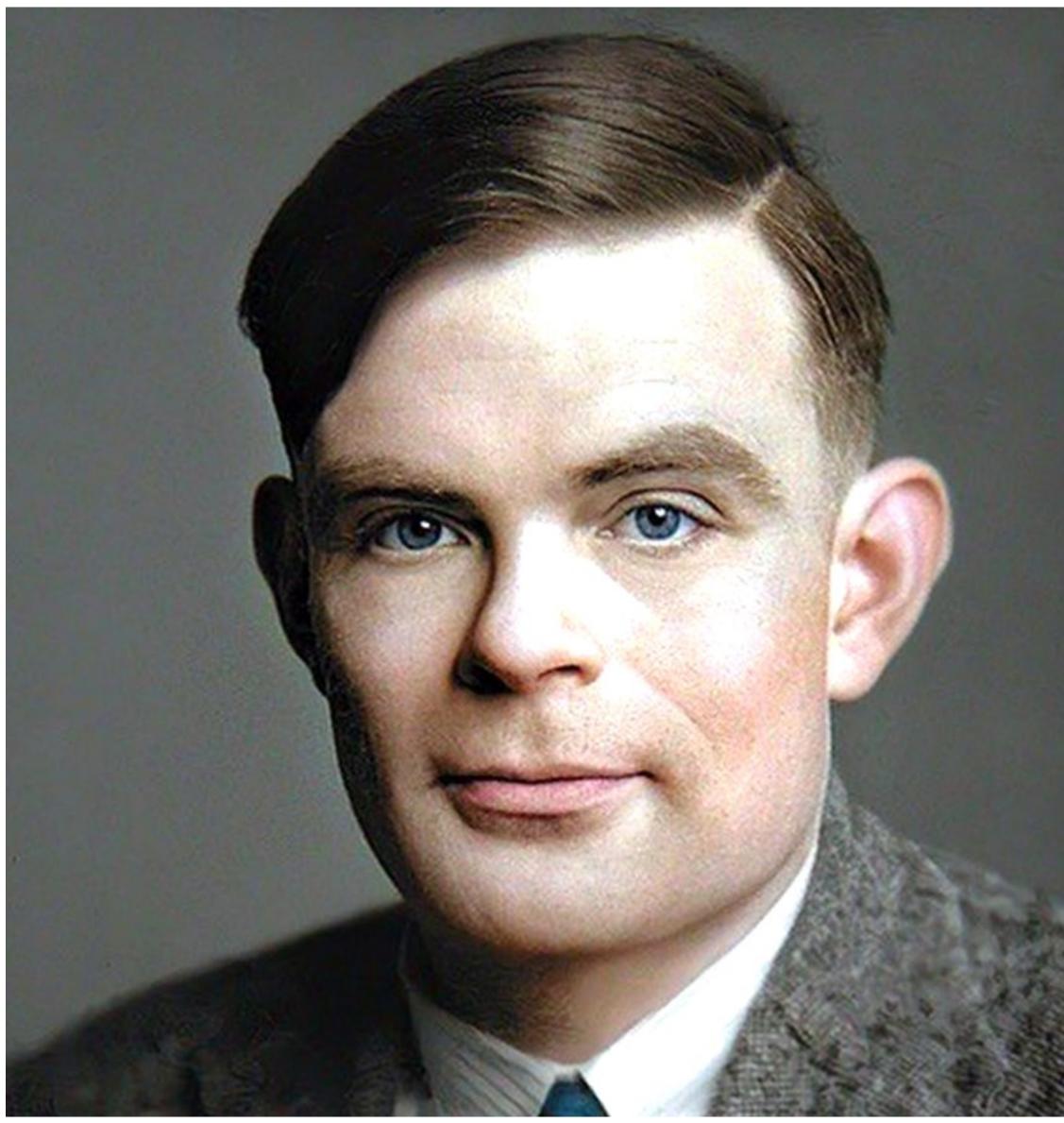
How do we model a computing device that can recognize as many languages as possible?



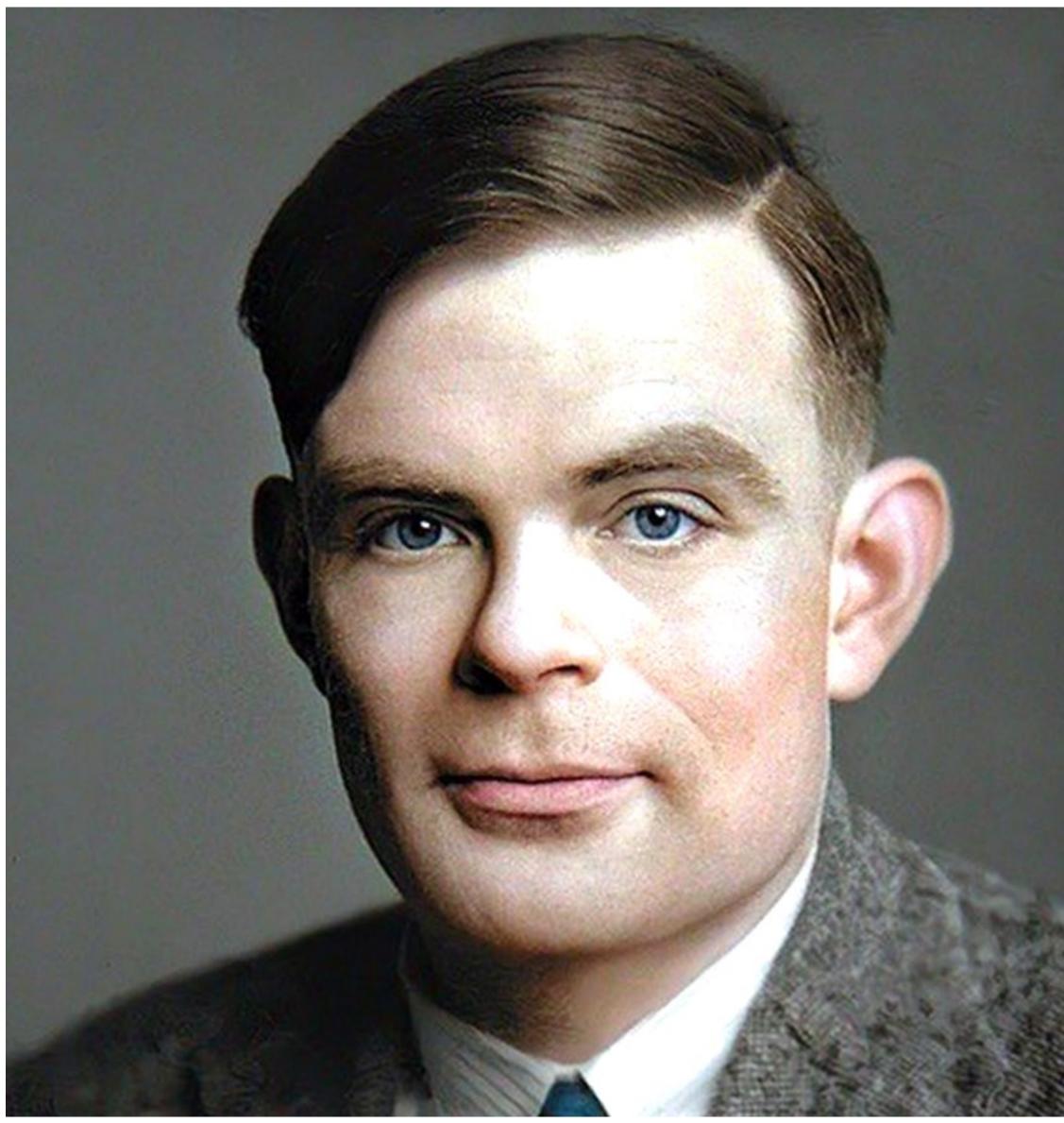
In March 1936, Alan Turing (aged 23!) published a paper detailing the a-machine (for automatic machine), an automaton for computing on real numbers.



- In March 1936, Alan Turing (aged 23!) published a paper detailing the a-machine (for automatic machine), an automaton for computing on real numbers.
- They're now more popularly referred to as **Turing machines** in his honor.



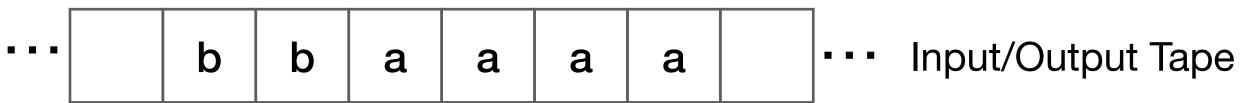
- In March 1936, Alan Turing (aged 23!) published a paper detailing the a-machine (for automatic machine), an automaton for computing on real numbers.
- They're now more popularly referred to as Turing machines in his honor.
- Watch: The Imitation Game!



•••		b	b	а	а	а	а		•••	Input/Outp
-----	--	---	---	---	---	---	---	--	-----	------------

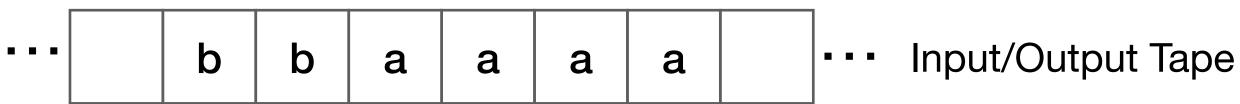
out Tape

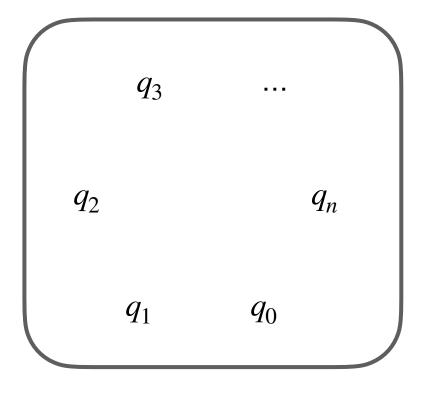
• Input written on (infinite) one sided tape.



t/Output Tape ('erase') on nemory/fape • Input written on (infinite) one sided tape.

• Special blank characters.





Finite control

Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

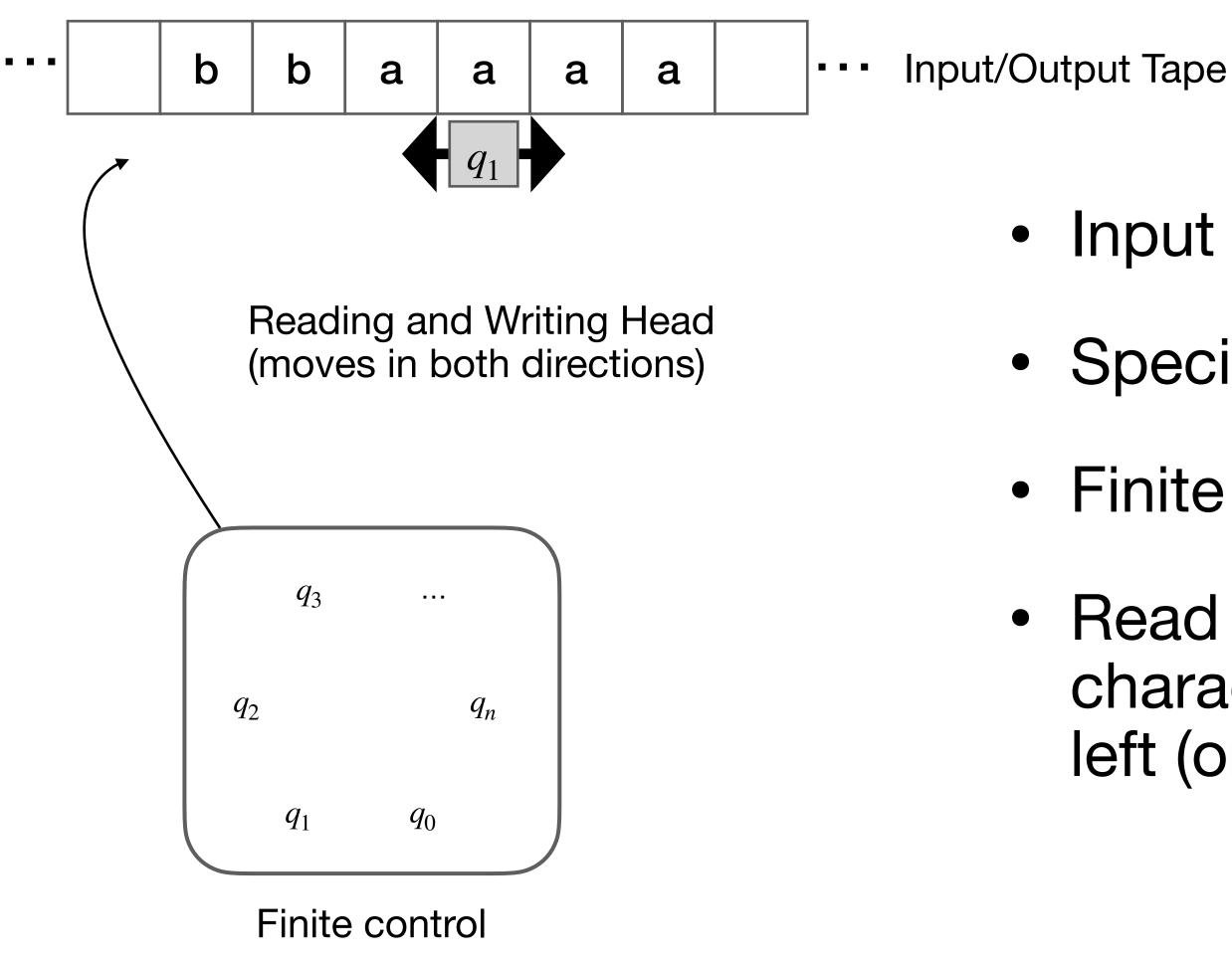


Input written on (infinite) one sided tape.

- Special blank characters.
- Finite state control (similar to DFA).

• Read character under head, write character out, move the head right or left (or stay).

Turing Machine



Input written on (infinite) one sided tape.

- Special blank characters.
- Finite state control (similar to DFA).

• Read character under head, write character out, move the head right or left (or stay).

no "counter-example."

• Church-Turing Thesis: TMs are the most general computing devices. So far,

- no "counter-example."
- Every TM can be represented as a string.

> Not a trearen

• Church-Turing Thesis: TMs are the most general computing devices. So far,

- no "counter-example."
- Every TM can be represented as a string.
- for stored program computing. UTM can simulate any TM!

• Church-Turing Thesis: TMs are the most general computing devices. So far,

The existence of a Universal Turing Machine, which is the model/inspiration

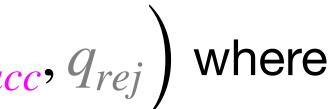
- no "counter-example."
- Every TM can be represented as a string.
- for stored program computing. UTM can simulate any TM!
- Implications for what can be computed and what cannot be computed

• Church-Turing Thesis: TMs are the most general computing devices. So far,

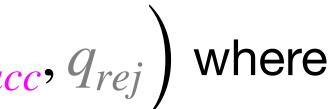
The existence of a Universal Turing Machine, which is the model/inspiration

Example Computers exist because we are lazy... so Stanford's CS 103 to the rescue.

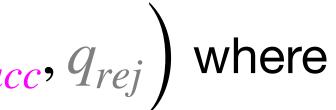
- *Q* is a finite set of states
- Σ is a finite set called the input alphabet



- *Q* is a finite set of states
- Σ is a finite set called the input alphabet
- Γ is a finite set called the tape alphabet



- *Q* is a finite set of states
- Σ is a finite set called the input alphabet
- Γ is a finite set called the tape alphabet
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$: Transition function.



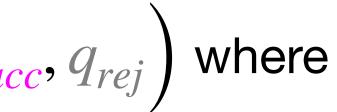
- *Q* is a finite set of states
- Σ is a finite set called the input alphabet
- Γ is a finite set called the tape alphabet
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$: Transition function.
- $q_0 \in Q$ is called the initial state.



- *Q* is a finite set of states
- Σ is a finite set called the input alphabet
- Γ is a finite set called the tape alphabet
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$: Transition function.
- $q_0 \in Q$ is called the initial state.
- $q_{acc} \in Q$, $q_{rej} \in Q$ are the accepting state and rejecting state, respectively.

A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where

- *Q* is a finite set of states
- Σ is a finite set called the input alphabet
- Γ is a finite set called the tape alphabet
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$: Transition function.
- $q_0 \in Q$ is called the initial state.
- $q_{acc} \in Q$, $q_{rej} \in Q$ are the accepting state and rejecting state, respectively.
- □ a special symbol for blank on the tape

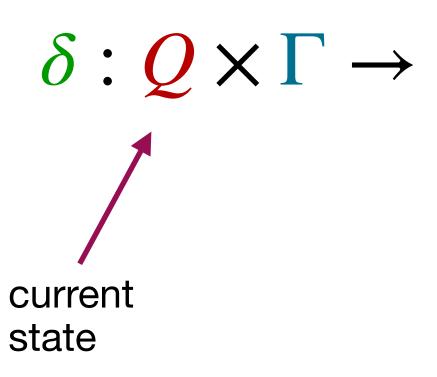


15

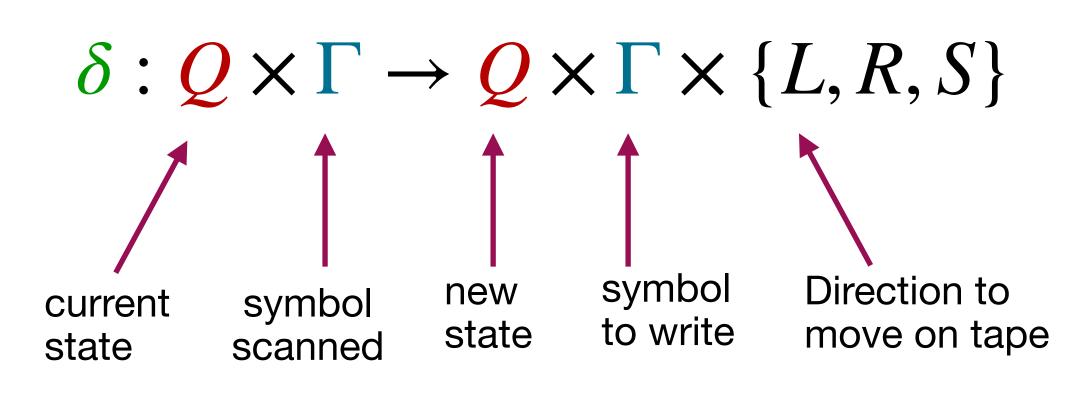
Transition function

WILEN

new symbol on Jape $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ rew state cre dep.



$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$



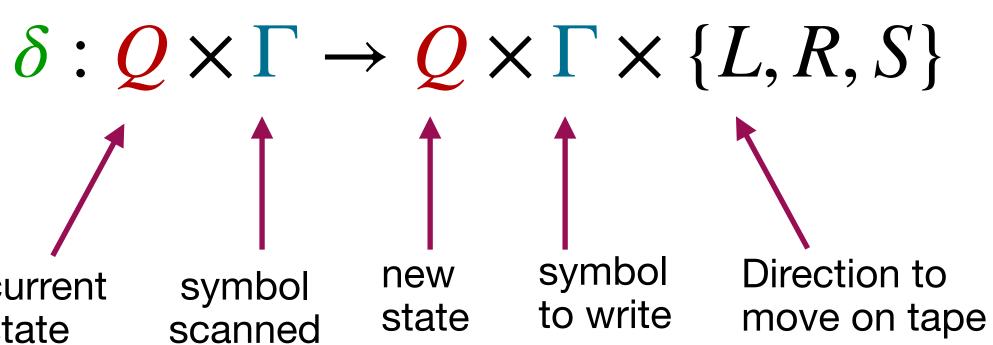
current state

symbol

scanned

From state *q*, on reading *a*:

- go to state p
- write **b**
- move head Left
- missing transitions lead to BSOD



current state

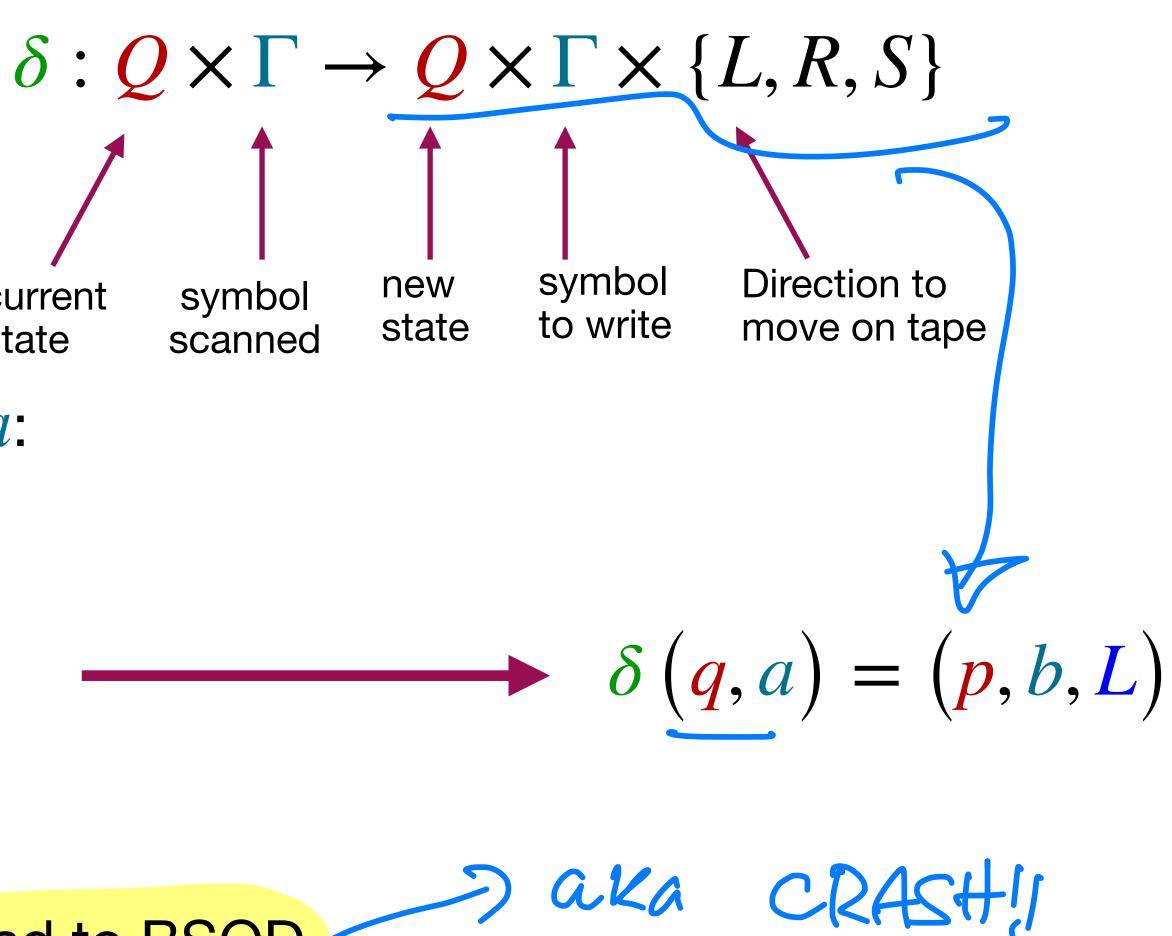
symbol

scanned

From state *q*, on reading *a*:

- go to state *p*
- write **b**
- move head Left

missing transitions lead to BSOD



More example(s) Same link as last time again

• TMs have a new behavior - it may never halt.

- TMs have a new behavior it may never halt.
 - Need to distinguish cases, related to "deciders" (partial and total).

- TMs have a new behavior it may never halt.
 - Need to distinguish cases, related to "deciders" (partial and total).
- Recursively enumerable (aka RE) languages

- TMs have a new behavior it may never halt.
 - Need to distinguish cases, related to "deciders" (partial and total).
- Recursively enumerable (aka RE) languages
 - $L = \{L(M) \mid M \text{ some Turing machine}\}$

- TMs have a new behavior it may never halt.
 - Need to distinguish cases, related to "deciders" (partial and total).
- Recursively enumerable (aka RE) languages
 - $L = \{L(M) \mid M \text{ some Turing machine}\}$
- Recursive/decidable languages

- TMs have a new behavior it may never halt.
 - Need to distinguish cases, related to "deciders" (partial and total).
- Recursively enumerable (aka RE) languages

• $L = \{L(M) \mid M \text{ some Turing machine}\}$

• Recursive/decidable languages

• $L = \{L(M) \mid M \text{ some Turing machine that halts on all inputs}\}$

A total decider is a TM which will always halt in an accept or reject state.

- A total decider is a TM which will always halt in an accept or reject state.
 - *Recursive languages* are called decidable language precisely because they have total deciders.

- A total decider is a TM which will always halt in an accept or reject state.
 - *Recursive languages* are called decidable language precisely because they have total deciders.
- A partial decider is a TM, which if given string in its language, will reach an accept state.

- A total decider is a TM which will always halt in an accept or reject state.
 - *Recursive languages* are called decidable language precisely because they have total deciders.
- A partial decider is a TM, which if given string in its language, will reach an accept state.
 - If given a string that is not in its language, it could loop forever.

- A total decider is a TM which will always halt in an accept or reject state.
 - *Recursive languages* are called decidable language precisely because they have total deciders.
- A partial decider is a TM, which if given string in its language, will reach an accept state.
 - If given a string that is not in its language, it could loop forever.
 - Recursively enumerable languages are ones for which a partial decider exists.

• Fundamental questions:

- Fundamental questions:
 - What languages are RE?

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

• A *semi-decidable* problem (equivalent of recursively enumerable) could be:

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

- A *semi-decidable* problem (equivalent of recursively enumerable) could be:
 - **Decidable** equivalent of recursive (TM always accepts or rejects).

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

- A *semi-decidable* problem (equivalent of recursively enumerable) could be:
 - Decidable equivalent of recursive (TM always accepts or rejects).
 - Undecidable Problem is not recursive

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

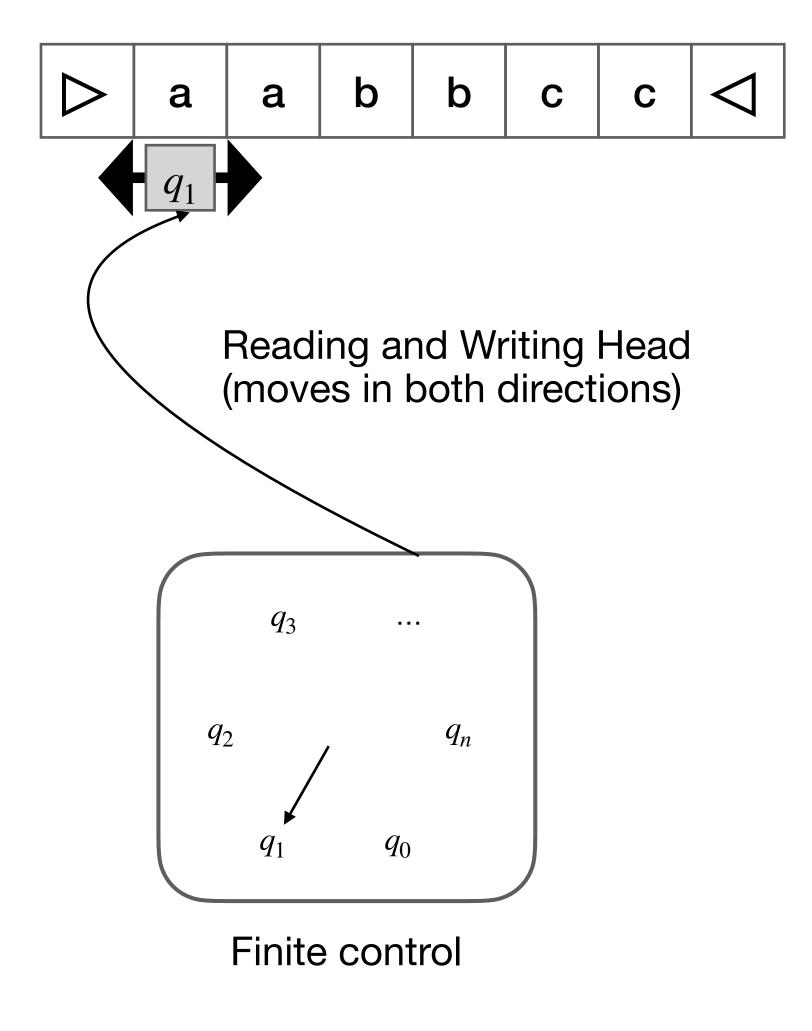
- A *semi-decidable* problem (equivalent of recursively enumerable) could be:
 - **Decidable** equivalent of recursive (TM always accepts or rejects).
 - Undecidable Problem is not recursive
- There are also undecidable problems that are not recursively enumerable!

- Fundamental questions:
 - What languages are RE?
 - Which are recursive?
 - What is the difference?
 - What makes a language decidable?

More on these closer to end of semester.

- A *semi-decidable* problem (equivalent of recursively enumerable) could be:
 - **Decidable** equivalent of recursive (TM always accepts or rejects).
 - Undecidable Problem is not recursive
- There are also undecidable problems that are not recursively enumerable!

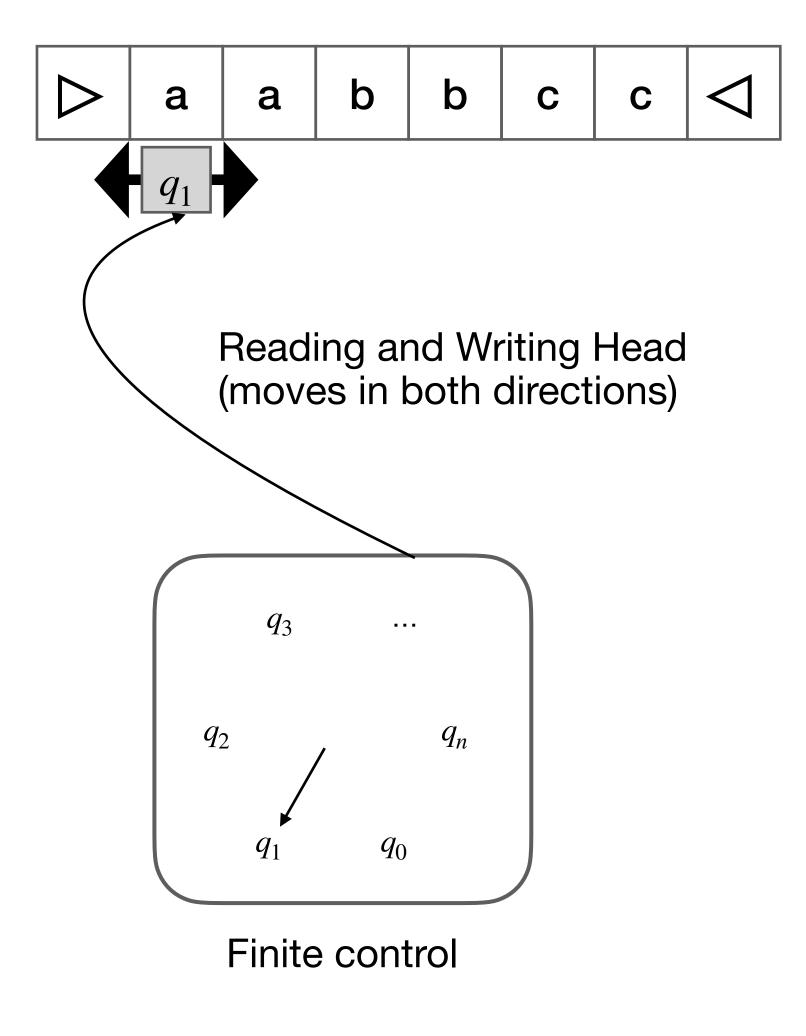
Linear Bounded Automata Relation to TMs



• We skipped LBAs

• They can be thought of as *restricted* Turing Machines.

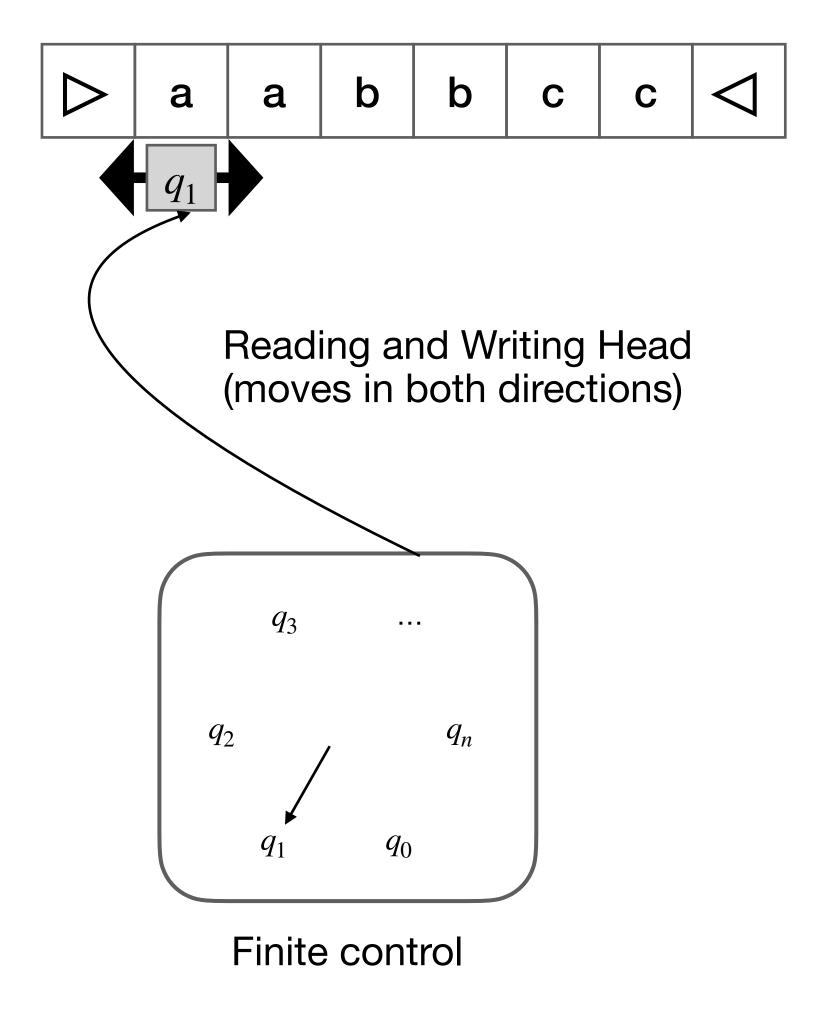
Linear Bounded Automata Relation to TMs



• We skipped LBAs

- They can be thought of as *restricted* Turing Machines.
- Tape used grows *linearly* with size of input

Linear Bounded Automata Relation to TMs



• We skipped LBAs

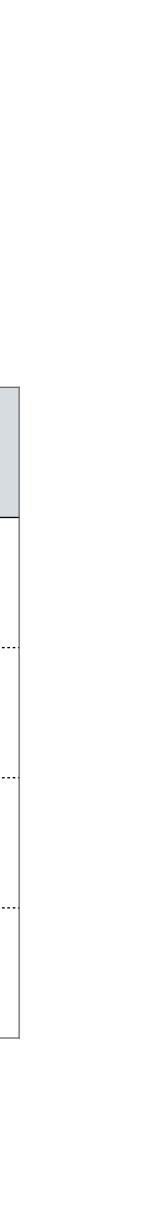
- They can be thought of as *restricted* Turing Machines.
- Tape used grows *linearly* with size of input

(Nondeterministic) LBA can recognize all context-sensitive languages.

Wrap up the four-week tour of Models of Computation.

Chansky's terminology				
Grammar	Languages	Production Rules	Automation	Examples
Туре-0	Turing machine	$\gamma \rightarrow \alpha$ (no constraints)	Turing Machines	L = { w w is a TM which halts }
Type-1	Context-sensitive	$\alpha A \beta \rightarrow \alpha \gamma \beta$	Linear Bounded Automata	$L = \{a^{n}b^{n}c^{n} \mid n > 0\}$
Type-2	Context-free	$A \rightarrow \alpha$	Pushdown Automata	$L = \{ a^n b^n \mid n > 0 \}$
Type-3	Regular	A → aB	Non-determinstic Finite Automata	L = { a ⁿ n > 0 }
		1	Diane as DFAS	1

on regeres



• **Theorem (Turing, 1936):** There is a Turing Machine, called the Universal on w — accepts, rejects, loops.

Turing Machine, that, when run on an input of the form $\langle M, w \rangle$ where M is a TM and w is a string, simulates M running on w and does whatever M does

- **Theorem (Turing, 1936):** There is a Turing Machine, called the Universal on w — accepts, rejects, loops.
- Question for the weekend: Recall that the language of a TM is the set of strings it accepts.

Turing Machine, that, when run on an input of the form $\langle M, w \rangle$ where M is a TM and w is a string, simulates M running on w and does whatever M does

- **Theorem (Turing, 1936):** There is a Turing Machine, called the Universal on w — accepts, rejects, loops.
- Question for the weekend: Recall that the language of a TM is the set of strings it accepts.

Turing Machine, that, when run on an input of the form $\langle M, w \rangle$ where M is a TM and w is a string, simulates M running on w and does whatever M does

What is the language of a UTM?