
Context-sensitive and decidable 
languages

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.



Context Sensitive Language
Definition 

A language  is said to be context-sensitive if 
there exists a context-sensitive grammar , 
such that . 

L
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Context Sensitive Grammar (CSG)
Definition

A               is a quadruple G = (V, T, P, S)
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Context Sensitive Grammar (CSG)
Definition

A               is a quadruple G = (V, T, P, S)

•  is a finite set of non-terminal symbols. V

•  is a finite set of terminal symbols (alphabet).T

•  is a finite set of productions, each of the form  where  and  
is a string in  .
P A → α A ∈ V α

(V ∪ T)*

•  is a start symbol.S ∈ V
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Context Sensitive Grammar (CSG)
Definition

A               is a quadruple 


•  is a finite set of non-terminal symbols. 


•  is a finite set of terminal symbols (alphabet).


•  is a finite set of productions, each of the form  where  and  are 
strings in .


•  is a start symbol.

G = (V, T, P, S)
V

T

P α → β α β
(V ∪ T)*

S ∈ V
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L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

Context Sensitive Grammar (CSG)
able

> ↓
a bBbcC
of

- abalah ↓

Ab -> bA
aBbbcc
~

Ac -> Bbec ↓
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Example formally for completeness
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L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA
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Example formally for completeness
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L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

Context Sensitive Grammar (CSG)

G = {S, A, B}, {a, b, c},

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

, S

T
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Context Sensitive Language
Example formally for completeness
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V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA
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Context Sensitive Language
Example formally for completeness
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V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

S ⇝ aAbc ⇝ abAc ⇝ abBbcc ⇝ aBbbcc

⇝ aaAbbcc ⇝ aabAbcc ⇝ aabbAcc

⇝ aabbBbccc ⇝ aabBbbccc

⇝ aaBbbbccc ⇝ aaabbbccc

L = {anbncn |n ≥ 1}
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Context Sensitive Language
Another solution

L = {anbncn |n ≥ 1}
aTu + aV +a

S- aTr laSTU asTU-> acTUTU
- ↓

at-> als a ab UT
z

bu -> ba ↓
UT- +U Apologies for

the "color
aabTUu
-

bi -> bb locking" , Hand
to do it on

the fly
aabbUU

bu -> bl bot leaving
it unchanged so it

W

Cu- matches the recording Gabbe(

a46bC
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Recursively enumerable  
(Turing Recognizable) 
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“Most general” computer
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• Is there a kind of computer that can accept any language or compute any 
function? 

• Recall counting argument. Set of all languages:  is {L |L ⊆ {0,1}*}
(a) countably infinite   (b) uncountably infinite

• Set of all programs: is{P |P is a finite length computer program}
(a) countably infinite   (b) uncountably infinite

• Conclusion: There are languages for which there are no programs.

“Most general” computer

9



• We may need unbounded memory to 
recognize context-free languages. 

10

“Most general” computer



• We may need unbounded memory to 
recognize context-free languages. 

10

All Languages

Regular  
Languages CFLs

Languages 
recognizable 
by any feasible 
computing 
machine

“Most general” computer



• We may need unbounded memory to 
recognize context-free languages. 

• E.g.  requires 
unbounded counting. 

{anbn |n ∈ ℕ}

10

All Languages

Regular  
Languages CFLs

Languages 
recognizable 
by any feasible 
computing 
machine

“Most general” computer



• We may need unbounded memory to 
recognize context-free languages. 

• E.g.  requires 
unbounded counting. 

{anbn |n ∈ ℕ}

How do we model a computing 
device that has unbounded memory? 

10

All Languages

Regular  
Languages CFLs

Languages 
recognizable 
by any feasible 
computing 
machine

“Most general” computer



• We may need unbounded memory to 
recognize context-free languages. 

• E.g.  requires 
unbounded counting. 

{anbn |n ∈ ℕ}

How do we model a computing 
device that has unbounded memory? 

OR

10

All Languages

Regular  
Languages CFLs

Languages 
recognizable 
by any feasible 
computing 
machine

“Most general” computer



• We may need unbounded memory to 
recognize context-free languages. 

• E.g.  requires 
unbounded counting. 

{anbn |n ∈ ℕ}

How do we model a computing 
device that has unbounded memory? 

OR

How do we model a computing 
device that can recognize as many 
languages as possible?

10

All Languages

Regular  
Languages CFLs

Languages 
recognizable 
by any feasible 
computing 
machine

“Most general” computer
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Turing Machine
A brief history 

11

• In March 1936, Alan Turing (aged 
23!) published a paper detailing 
the a-machine (for automatic 
machine), an automaton for 
computing on real numbers.

• They’re now more popularly 
referred to as Turing machines 
in his honor.

• Watch: The Imitation Game!
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Turing Machine 

• Input written on (infinite) one sided tape. 

• Special blank characters. 

• Finite state control (similar to DFA).

• Read character under head, write 
character out, move the head right or 
left (or stay).
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Turing Machine 

• Input written on (infinite) one sided tape. 

• Special blank characters. 

• Finite state control (similar to DFA).

• Read character under head, write 
character out, move the head right or 
left (or stay).
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q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head 
(moves in both directions)

b b a a a a …… Input/Output Tape
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• Church-Turing Thesis: TMs are the most general computing devices. So far, 
no “counter-example.”

• Every TM can be represented as a string. 

• The existence of a Universal Turing Machine, which is the model/inspiration 
for stored program computing. UTM can simulate any TM!

• Implications for what can be computed and what cannot be computed

Turing Machine 

13

High level goals



Example

14

Computers exist because we are lazy… so Stanford’s CS 103 to the rescue.
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A Turing machine is a 7-tuple  where(Q, Σ, Γ, δ, q0, qacc, qrej)
•  is a finite set of statesQ

•  is a finite set called the input alphabetΣ
•  is a finite set called the tape alphabetΓ
• : : Transition function.δ Q × Γ → Q × Γ × {L, R, S}
•  is called the initial state.q0 ∈ Q

•  ,  are the accepting state and rejecting state, respectively.qacc ∈ Q qrej ∈ Q

•   a special symbol for blank on the tape⊔

Turing Machine 
Formal definition

15



Turing Machine 
Transition function 

δ : Q × Γ → Q × Γ × {L, R, S}
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Turing Machine 
Transition function 

δ : Q × Γ → Q × Γ × {L, R, S}
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Turing Machine 
Transition function 

δ : Q × Γ → Q × Γ × {L, R, S}

16

From state , on reading :  


• go to state 


• write 


• move head Left 

• missing transitions lead to BSOD

q a

p

b

symbol  
scanned

current 
state

new 
state

symbol 
to write

Direction to 
move on tape

                δ (q, a) = (p, b, L)

-

7
-

-> aka CRASH!!



More example(s)
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Same link as last time again
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Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt. 

• Need to distinguish cases, related to “deciders” (partial and total).  

• Recursively enumerable (aka RE) languages 

•  L = {L(M) ∣ M some Turing machine}
• Recursive/decidable languages 

• L = {L(M) ∣ M some Turing machine that halts on all inputs}
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• A total decider is a TM which will always halt in an accept or reject state. 

• Recursive languages are called decidable language precisely because they 
have total deciders. 

• A partial decider is a TM, which if given string in its language, will reach an 
accept state.

• If given a string that is not in its language, it could loop forever. 

• Recursively enumerable languages are ones for which a partial decider 
exists. 

19
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Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions: 

• What languages are RE? 

• Which are recursive? 

• What is the difference? 

• What makes a language 
decidable?

20

• A semi-decidable problem 
(equivalent of recursively 
enumerable) could be: 

• Decidable - equivalent of 
recursive (TM always accepts or 
rejects).

• Undecidable - Problem is not 
recursive 

• There are also undecidable problems 
that are not recursively enumerable!More on these closer 

to end of semester. 
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Linear Bounded Automata
• We skipped LBAs

• They can be thought of as restricted 
Turing Machines. 

• Tape used grows linearly with size of 
input 

• (Nondeterministic) LBA can recognize all 
context-sensitive languages.

21

a a b b c c

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head 
(moves in both directions)

Relation to TMs
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Grammar Languages Production Rules Automation Examples

Type-0 Turing machine γ → α  (no constraints) Turing Machines  L =  { w | w is a TM 
which halts }

Type-1 Context-sensitive αAβ → αγβ Linear Bounded Automata L = { anbncn  | n > 0 }

Type-2 Context-free A → α Pushdown Automata L = { anbn  | n > 0 }

Type-3 Regular A → aB Non-determinstic Finite 
Automata L = { an  | n > 0 }

Wrap up … 
… the four-week tour of Models of Computation.
- Chomsky's terminology

-j recognizable
↳ save as DFAs

-

on RegExer.
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TM and  is a string, simulates  running on  and does whatever  does 
on  — accepts, rejects, loops. 

⟨M, w⟩ M
w M w M

w

• Question for the weekend: Recall that the language of a TM is the set of 
strings it accepts. 

What is the language of a UTM? 
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