
Context-sensitive and decidable
languages

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Context Sensitive Language
Definition

A language is said to be context-sensitive if
there exists a context-sensitive grammar ,
such that .

L
G

L = L(G)

2

regular

context free

context sensitive

recursively enumerable

Context Sensitive Grammar (CSG)
Definition

A is a quadruple G = (V, T, P, S)

3

CFG

V -> finite set of non-terminals
I ↓ "terminals

T +
roles have the form

↓

P- P = rX(vvi) v - L
S
Gt (uT]

> Start symbol .

Context Sensitive Grammar (CSG)
Definition

A is a quadruple G = (V, T, P, S)

• is a finite set of non-terminal symbols. V

• is a finite set of terminal symbols (alphabet).T

• is a finite set of productions, each of the form where and
is a string in .
P A → α A ∈ V α

(V ∪ T)*

• is a start symbol.S ∈ V

3

CFG

O -

Context Sensitive Grammar (CSG)
Definition

A is a quadruple

• is a finite set of non-terminal symbols.

• is a finite set of terminal symbols (alphabet).

• is a finite set of productions, each of the form where and are
strings in .

• is a start symbol.

G = (V, T, P, S)
V

T

P α → β α β
(V ∪ T)*

S ∈ V

4

⑮

-

Example formally for completeness

5

L = {anbncn |n ≥ 1}

Context Sensitive Grammar (CSG)

Example formally for completeness

5

L = {anbncn |n ≥ 1}

V = {S, A, B}

Context Sensitive Grammar (CSG)

Example formally for completeness

5

L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

Context Sensitive Grammar (CSG)
able

> ↓
a bBbcC
of

- abalah ↓

Ab -> bA
aBbbcc
~

Ac -> Bbec ↓
anbb

bB - Bb

ab + aal-

Example formally for completeness

5

L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

Context Sensitive Grammar (CSG)

O

Example formally for completeness

5

L = {anbncn |n ≥ 1}

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

Context Sensitive Grammar (CSG)

G = {S, A, B}, {a, b, c},

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

, S

T

-

Context Sensitive Language
Example formally for completeness

6

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

L = {anbncn |n ≥ 1}

Context Sensitive Language
Example formally for completeness

6

V = {S, A, B}

T = {a, b, c}

P =

S → abc |aAbc,
Ab → bA,

Ac → Bbcc,
bB → Bb,

aB → aa |aaA

S ⇝ aAbc ⇝ abAc ⇝ abBbcc ⇝ aBbbcc

⇝ aaAbbcc ⇝ aabAbcc ⇝ aabbAcc

⇝ aabbBbccc ⇝ aabBbbccc

⇝ aaBbbbccc ⇝ aaabbbccc

L = {anbncn |n ≥ 1}

7

Context Sensitive Language
Another solution

L = {anbncn |n ≥ 1}
aTu + aV +a

S- aTr laSTU asTU-> acTUTU
- ↓

at-> als a ab UT
z

bu -> ba ↓
UT- +U Apologies for

the "color
aabTUu
-

bi -> bb locking" , Hand
to do it on

the fly
aabbUU

bu -> bl bot leaving
it unchanged so it

W

Cu- matches the recording Gabbe(

a46bC

Recursively enumerable
(Turing Recognizable)
language

8

Recursively enumerable
(Turing Recognizable)
language

8

regular

context free

context sensitive

recursively enumerable

• Is there a kind of computer that can accept any language or compute any
function?

“Most general” computer

9

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: is {L |L ⊆ {0,1}*}

“Most general” computer

9

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: is {L |L ⊆ {0,1}*}
(a) countably infinite (b) uncountably infinite

“Most general” computer

9

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: is {L |L ⊆ {0,1}*}
(a) countably infinite (b) uncountably infinite

• Set of all programs: is{P |P is a finite length computer program}

“Most general” computer

9

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: is {L |L ⊆ {0,1}*}
(a) countably infinite (b) uncountably infinite

• Set of all programs: is{P |P is a finite length computer program}
(a) countably infinite (b) uncountably infinite

“Most general” computer

9

There

is a gap
blu # of

computer
programs
and

all probleme

• Is there a kind of computer that can accept any language or compute any
function?

• Recall counting argument. Set of all languages: is {L |L ⊆ {0,1}*}
(a) countably infinite (b) uncountably infinite

• Set of all programs: is{P |P is a finite length computer program}
(a) countably infinite (b) uncountably infinite

• Conclusion: There are languages for which there are no programs.

“Most general” computer

9

• We may need unbounded memory to
recognize context-free languages.

10

“Most general” computer

• We may need unbounded memory to
recognize context-free languages.

10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

• We may need unbounded memory to
recognize context-free languages.

• E.g. requires
unbounded counting.

{anbn |n ∈ ℕ}

10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

• We may need unbounded memory to
recognize context-free languages.

• E.g. requires
unbounded counting.

{anbn |n ∈ ℕ}

How do we model a computing
device that has unbounded memory?

10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

• We may need unbounded memory to
recognize context-free languages.

• E.g. requires
unbounded counting.

{anbn |n ∈ ℕ}

How do we model a computing
device that has unbounded memory?

OR

10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

• We may need unbounded memory to
recognize context-free languages.

• E.g. requires
unbounded counting.

{anbn |n ∈ ℕ}

How do we model a computing
device that has unbounded memory?

OR

How do we model a computing
device that can recognize as many
languages as possible?

10

All Languages

Regular
Languages CFLs

Languages
recognizable
by any feasible
computing
machine

“Most general” computer

Turing Machine
A brief history

11

Turing Machine
A brief history

11

• In March 1936, Alan Turing (aged
23!) published a paper detailing
the a-machine (for automatic
machine), an automaton for
computing on real numbers.

Turing Machine
A brief history

11

• In March 1936, Alan Turing (aged
23!) published a paper detailing
the a-machine (for automatic
machine), an automaton for
computing on real numbers.

• They’re now more popularly
referred to as Turing machines
in his honor.

Turing Machine
A brief history

11

• In March 1936, Alan Turing (aged
23!) published a paper detailing
the a-machine (for automatic
machine), an automaton for
computing on real numbers.

• They’re now more popularly
referred to as Turing machines
in his honor.

• Watch: The Imitation Game!

Turing Machine

12

Turing Machine

• Input written on (infinite) one sided tape.

12

b b a a a a …… Input/Output Tape

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

12

b b a a a a …… Input/Output Tape
allow blanks

Cerase") on
T memory /tape-
-

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

12

q2 qn

q1 q0

q3 …

Finite control

b b a a a a …… Input/Output Tape

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

• Read character under head, write
character out, move the head right or
left (or stay).

12

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head
(moves in both directions)

b b a a a a …… Input/Output Tape

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

• Read character under head, write
character out, move the head right or
left (or stay).

12

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head
(moves in both directions)

b b a a a a …… Input/Output Tape

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

Turing Machine

13

High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

• Every TM can be represented as a string.

Turing Machine

13

High level goals
->

Not a theorem

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

• Every TM can be represented as a string.

• The existence of a Universal Turing Machine, which is the model/inspiration
for stored program computing. UTM can simulate any TM!

Turing Machine

13

High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

• Every TM can be represented as a string.

• The existence of a Universal Turing Machine, which is the model/inspiration
for stored program computing. UTM can simulate any TM!

• Implications for what can be computed and what cannot be computed

Turing Machine

13

High level goals

Example

14

Computers exist because we are lazy… so Stanford’s CS 103 to the rescue.

A Turing machine is a 7-tuple where(Q, Σ, Γ, δ, q0, qacc, qrej)
• is a finite set of statesQ

• is a finite set called the input alphabetΣ

Turing Machine
Formal definition

15

A Turing machine is a 7-tuple where(Q, Σ, Γ, δ, q0, qacc, qrej)
• is a finite set of statesQ

• is a finite set called the input alphabetΣ
• is a finite set called the tape alphabetΓ

Turing Machine
Formal definition

15

A Turing machine is a 7-tuple where(Q, Σ, Γ, δ, q0, qacc, qrej)
• is a finite set of statesQ

• is a finite set called the input alphabetΣ
• is a finite set called the tape alphabetΓ
• : : Transition function.δ Q × Γ → Q × Γ × {L, R, S}

Turing Machine
Formal definition

15

A Turing machine is a 7-tuple where(Q, Σ, Γ, δ, q0, qacc, qrej)
• is a finite set of statesQ

• is a finite set called the input alphabetΣ
• is a finite set called the tape alphabetΓ
• : : Transition function.δ Q × Γ → Q × Γ × {L, R, S}
• is called the initial state.q0 ∈ Q

Turing Machine
Formal definition

15

A Turing machine is a 7-tuple where(Q, Σ, Γ, δ, q0, qacc, qrej)
• is a finite set of statesQ

• is a finite set called the input alphabetΣ
• is a finite set called the tape alphabetΓ
• : : Transition function.δ Q × Γ → Q × Γ × {L, R, S}
• is called the initial state.q0 ∈ Q

• , are the accepting state and rejecting state, respectively.qacc ∈ Q qrej ∈ Q

Turing Machine
Formal definition

15

A Turing machine is a 7-tuple where(Q, Σ, Γ, δ, q0, qacc, qrej)
• is a finite set of statesQ

• is a finite set called the input alphabetΣ
• is a finite set called the tape alphabetΓ
• : : Transition function.δ Q × Γ → Q × Γ × {L, R, S}
• is called the initial state.q0 ∈ Q

• , are the accepting state and rejecting state, respectively.qacc ∈ Q qrej ∈ Q

• a special symbol for blank on the tape⊔

Turing Machine
Formal definition

15

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

16

current symbol
on tape new symbol on
↑ > tape

- direction to

↓ ↳ head
current new state move

State one Step .

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

16

current
state

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

16

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

16

From state , on reading :

• go to state

• write

• move head Left

• missing transitions lead to BSOD

q a

p

b

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

16

From state , on reading :

• go to state

• write

• move head Left

• missing transitions lead to BSOD

q a

p

b

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

 δ (q, a) = (p, b, L)

-

7
-

-> aka CRASH!!

More example(s)

17

Same link as last time again

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

18

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

18

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

• Recursively enumerable (aka RE) languages

18

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

• Recursively enumerable (aka RE) languages

• L = {L(M) ∣ M some Turing machine}

18

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

• Recursively enumerable (aka RE) languages

• L = {L(M) ∣ M some Turing machine}
• Recursive/decidable languages

18

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• TMs have a new behavior - it may never halt.

• Need to distinguish cases, related to “deciders” (partial and total).

• Recursively enumerable (aka RE) languages

• L = {L(M) ∣ M some Turing machine}
• Recursive/decidable languages

• L = {L(M) ∣ M some Turing machine that halts on all inputs}

18

• A total decider is a TM which will always halt in an accept or reject state.

19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• A total decider is a TM which will always halt in an accept or reject state.

• Recursive languages are called decidable language precisely because they
have total deciders.

19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• A total decider is a TM which will always halt in an accept or reject state.

• Recursive languages are called decidable language precisely because they
have total deciders.

• A partial decider is a TM, which if given string in its language, will reach an
accept state.

19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• A total decider is a TM which will always halt in an accept or reject state.

• Recursive languages are called decidable language precisely because they
have total deciders.

• A partial decider is a TM, which if given string in its language, will reach an
accept state.

• If given a string that is not in its language, it could loop forever.

19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• A total decider is a TM which will always halt in an accept or reject state.

• Recursive languages are called decidable language precisely because they
have total deciders.

• A partial decider is a TM, which if given string in its language, will reach an
accept state.

• If given a string that is not in its language, it could loop forever.

• Recursively enumerable languages are ones for which a partial decider
exists.

19

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

20

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

20

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

20

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

20

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

20

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

• Decidable - equivalent of
recursive (TM always accepts or
rejects).

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

• Decidable - equivalent of
recursive (TM always accepts or
rejects).

• Undecidable - Problem is not
recursive

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

• Decidable - equivalent of
recursive (TM always accepts or
rejects).

• Undecidable - Problem is not
recursive

• There are also undecidable problems
that are not recursively enumerable!

Languages defined by a Turing machine
Recursive vs. Recursively Enumerable

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language
decidable?

20

• A semi-decidable problem
(equivalent of recursively
enumerable) could be:

• Decidable - equivalent of
recursive (TM always accepts or
rejects).

• Undecidable - Problem is not
recursive

• There are also undecidable problems
that are not recursively enumerable!More on these closer

to end of semester.

Linear Bounded Automata
• We skipped LBAs

• They can be thought of as restricted
Turing Machines.

21

a a b b c c

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head
(moves in both directions)

Relation to TMs

Linear Bounded Automata
• We skipped LBAs

• They can be thought of as restricted
Turing Machines.

• Tape used grows linearly with size of
input

21

a a b b c c

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head
(moves in both directions)

Relation to TMs

Linear Bounded Automata
• We skipped LBAs

• They can be thought of as restricted
Turing Machines.

• Tape used grows linearly with size of
input

• (Nondeterministic) LBA can recognize all
context-sensitive languages.

21

a a b b c c

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head
(moves in both directions)

Relation to TMs

22

Grammar Languages Production Rules Automation Examples

Type-0 Turing machine γ → α (no constraints) Turing Machines L = { w | w is a TM
which halts }

Type-1 Context-sensitive αAβ → αγβ Linear Bounded Automata L = { anbncn | n > 0 }

Type-2 Context-free A → α Pushdown Automata L = { anbn | n > 0 }

Type-3 Regular A → aB Non-determinstic Finite
Automata L = { an | n > 0 }

Wrap up …
… the four-week tour of Models of Computation.
- Chomsky's terminology

-j recognizable
↳ save as DFAs

-

on RegExer.

Next class
Universal Turing Machines

23

Next class
Universal Turing Machines

• Theorem (Turing, 1936): There is a Turing Machine, called the Universal
Turing Machine, that, when run on an input of the form where is a
TM and is a string, simulates running on and does whatever does
on — accepts, rejects, loops.

⟨M, w⟩ M
w M w M

w

23

Next class
Universal Turing Machines

• Theorem (Turing, 1936): There is a Turing Machine, called the Universal
Turing Machine, that, when run on an input of the form where is a
TM and is a string, simulates running on and does whatever does
on — accepts, rejects, loops.

⟨M, w⟩ M
w M w M

w

• Question for the weekend: Recall that the language of a TM is the set of
strings it accepts.

23

Next class
Universal Turing Machines

• Theorem (Turing, 1936): There is a Turing Machine, called the Universal
Turing Machine, that, when run on an input of the form where is a
TM and is a string, simulates running on and does whatever does
on — accepts, rejects, loops.

⟨M, w⟩ M
w M w M

w

• Question for the weekend: Recall that the language of a TM is the set of
strings it accepts.

What is the language of a UTM?

23

