Universal Turing Machines Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Turing Machine

- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Read character under head, write character out, move the head right or left (or stay).

Turing Machine Transition function

current state

symbol

scanned

From state q, on reading a:

- go to state p
- write **b**
- move head Left
- Missing transitions lead to hell state. "Blue screen of death." "Machine crashes.

 $\bullet \quad \delta(q,a) = (p,b,L)$

Turing machine variants Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes
- Bi-infinite tape (from last lecture)
- Multiple heads
- Multiple heads and tapes

Turing machine variants Multi-track Tapes

Suppose we have a TM with multiple tracks:

Is there an equivalent single-track TM?

New transition function: $\delta: Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \to Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{-1, +1\}$

Turing machine variants Infinite Bi-directional Tape

Suppose we have a TM with tape that is bi-infinite:

$$--2 -1 0 +1$$

Is there an equivalent one-sided TM?

Can model as multiple tapes.

+5	+6		
-5	-6		

- Positive index track
- Negative index track . . .

Turing machine variants Infinite Bi-directional Tape

Suppose we have a TM with tape that is bi-infinite:

$$- -2 -1 0 +1$$

Is there an equivalent one-sided TM?

$$\Rightarrow 0 1 -1 2$$

* Marker Symbol tracks/indicates which index we look at

Or as single tape interleaved with positive and negative indexes.

Turing machine variants Multiple Read/Write Heads

Suppose we have a TM with multiple heads:

What does the transition function for the equivalent nominal TM look like?

Turing machine variants Multiple Read/Write Heads

Suppose we have a TM with multiple heads:

What does the transition function for the equivalent nominal TM look like?

Determinism in Turing Machines

Deterministic vs Non-Deterministic

Power of NTM vs. DTM?

- A DTM can simulate a NTM in the following ways:
 - Multiplicity of configuration of states
 - 1. Have the store multiple configurations of the NTM.
 - 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.
 - Multiple Tapes Can simulate NTM with 3-tape DTM:
 - 1. First tape holds original input
 - 2. Second used to simulate a particular computation of NTM
 - 3. Third tape encodes path in NTM computation tree.

Universal Turing Machine Introduction

A single Turing Machine M_{μ} that can compute anything computable Takes as input:

- the description of some other TM M
- data w for M to run on

Outputs:

• results of running M(w)

Universal Turing Machine Some notation

M: Turing machine

number)

w: An input string.

 $\langle M, w \rangle$: A unique string encoding both M and input w.

$\langle M \rangle$: a string uniquely describing M (we will see that it can be thought of as a

$L(M_u) = \{ \langle M, w \rangle \text{ is a TM and } M \text{ accepts } w \}$

Universal Turing Machine Introduction

We want to construct a Turing machine such that:

and data w, and executes M on data w.

In other words, M_{μ} simulates the run of M on w.

- $L(M_{u}) = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$
- M_{μ} is a stored-program computer. It reads $\langle M, w \rangle$, parses it as a program M

Universal Turing Machine Coding of TMs

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM, then there is a one-tape TMM' that accepts L, such that

•
$$\Gamma = \{0, 1, B\}$$

- states numbered 1,...,k
- q_1 is a unique start state
- q_3 is a unique halt/accept state
- q_3 is a unique halt/reject state

Note: To represent a TM, we need only list its set of transitions - everything else is implicit by the above.

Listing Transition

- Use the following order:
 - $\delta(q_1,0), \delta(q_1,1), \delta(q_1,B), \delta(q_2,0), \delta(q_2,1), \delta(q_2,B), \dots$ $\ldots \delta(q_k, 0), \delta(q_k, 1), \delta(qk, B)$
- Use the following encoding:

 $111 t_1 11 t_2 11 t_3 11 \dots 11 t_{3k} 111$

where t_i is the encoding of transition *i* as given on the next slide.

Encoding a transition

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where

- state q_i represented by 0^i
- 0,1,B represented by 0, 00, 000
- L, R, S represented by 0, 00, 000

$\delta(q_3, 1) = (q_4, 0, R)$ represented by $000 \ 100 \ 100 \ 1000$

 $1 q_4 0$ R q_3

Example **Typical TM code:**

- Begins, ends with 111
- Transitions separated by 11
- Fields within transition separated by 1
- Individual fields represented by 0s

19

TMs are (binary) numbers

- Every TM is encoded by a unique element of $\ensuremath{\mathbb{N}}$
- Convention: elements of N that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let < M > mean the number that encodes M
- Conversely, let M_n be the TM with encoding n.

How M_{u} works Configuration

Three tapes

- Tape 1: holds input M and w demarcated with #; never changes lacksquare
- Tape 2: simulates *M*'s single tape
- Tape 3: holds *M*'s current state

Input M

Universal Turing Machine How M_{μ} works: Phase 1 (validate)

- Check if Tape 1 holds a valid TM by examining < M >
 - There should be no more than three consecutive ones.
 - The beginning and ending must be enclosed in 111's.
 - Substring $110^i | 0^j 1$ does not appear twice.
 - Appropriate number of zeros and ones between 1's demarcating transition code

• Etc.

11000010100000100001...

Universal Turing Machine How M_{μ} works - Phase 2 (initialize)

- Copy w to Tape 2
- Write 0 on Tape 3 indicating it is in the start state
- If at any time, Tape 3 holds 00 (or 000), then halt and accept (or reject)

Code for M

)()11()

Current contents of M's tape

Current state of M

$111010100001001001101001000001010111\dots 111 \ \# \ 100110$ Tape 1 Tape 2 Tape 3

Universal Turing Machine How M_{μ} works - Phase 3 (simulation)

- Repeatedly simulate the steps of M
- Example: If tape 3 holds 0^i and tape 2 is scanning 1, then search for substring $110^{i}1001$ on tape 1.

Code for M

Current contents of M's tape

Current state of M

Universal Turing Machine How M_{μ} works - Phase 3 - (simulation, after a single move)

- Check if 00 or 000 is on tape 3; if so, halt and accept or reject
- Otherwise, simulate the next move by searching for pattern. In this example, the next pattern = 1100000101

Code for M

()()11()

Current contents of M's tape

Current state of M

Examples

https://rosettacode.org/wiki/Universal_Turing_machine#Python

Universal Turing Machine Examples

• See: