All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Universal Turing Machines Sides based on material by Kani, Erickson, Chekuri, et. al.

Turing Machine

- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Read character under head, write character out, move the head right or left (or stay).

Turing Machine Transition function

- go to state *p*
- write *b*
- move head *Left*
- Missing transitions lead to hell state. "Blue screen of death." "Machine crashes.

 $\delta(q, a) = (p, b, L)$

symbol

scanned

From state q , on reading a :

Turing machine variants Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes
- Bi-infinite tape (from last lecture)
- Multiple heads
- Multiple heads and tapes

Suppose we have a TM with multiple tracks:

Multi-track Tapes Turing machine variants

Is there an equivalent single-track TM?

New transition function: $\delta: Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \to Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{-1, +1\}$

Infinite Bi-directional Tape Turing machine variants

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

-
- -1 -2 -3 -4 -5 -6 \Box \Box ... Negative index track

*H*1 …

Can model as multiple tapes.

Infinite Bi-directional Tape Turing machine variants

$$
\left(\begin{array}{c|c}\n\hline\n\end{array}\right) \begin{array}{c|c}\n\hline\n\end{array}\right) \begin{array}{c|c}\n\hline\n\end{array}\n\begin{array}{c|c}\n\hline\n\end{array}\n\begin{array}{c|c}\n\hline\n\end{array}\n\end{array}
$$

*H*1 …

Or as single tape interleaved with positive and negative indexes.

* Marker Symbol tracks/indicates which index we look at

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

Suppose we have a TM with multiple heads:

Multiple Read/Write Heads Turing machine variants

What does the transition function for the equivalent nominal TM look like?

Suppose we have a TM with multiple heads:

Multiple Read/Write Heads Turing machine variants

What does the transition function for the equivalent nominal TM look like?

Determinism in Turing Machines

Determinism in Turing Machines Deterministic vs Non-Deterministic

Power of NTM vs. DTM?

- A DTM can simulate a NTM in the following ways:
	- **Multiplicity of configuration of states**
		- 1. Have the store multiple configurations of the NTM.
		- 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.
	- **Multiple Tapes** Can simulate NTM with 3-tape DTM:
		- 1. First tape holds original input
		- 2. Second used to simulate a particular computation of NTM
		- 3. Third tape encodes path in NTM computation tree.

A single Turing Machine $\,_{u}$ that can compute anything computable Takes as input:

- the description of some other TM *M*
- data w for M to run on

Universal Turing Machine Introduction

Outputs:

• results of running *M*(*w*)

Universal Turing Machine Some notation

: Turing machine *M*

number)

: An input string. *w*

 $\langle M, w \rangle$: A unique string encoding both M and input w .

$\langle M \rangle$: a string uniquely describing M (we will see that it can be thought of as a

$L(M_u) = \{ \langle M, w \rangle \text{ is a TM and } M \text{ accepts } w \}$

Universal Turing Machine Introduction

We want to construct a Turing machine such that:

and data w , and executes M on data w .

In other words, M_{μ} simulates the run of M on $w.$

-
- $L(M_u) = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$
- M_{u} is a stored-program computer. It reads $\langle M, w \rangle$, parses it as a program M
	-

- states numbered 1,...,*k*
- q_1 is a unique start state
- q_3 is a unique halt/accept state
- q_3 is a unique halt/reject state

Coding of TMs Universal Turing Machine

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TM M , then there is a one-tape TM M' that accepts L , such that

$$
\bullet \ \Gamma = \{0,1,B\}
$$

Note: To represent a TM, we need only list its set of transitions - everything else is implicit by the above.

Listing Transition

- Use the following order:
	- δ (*q*₁,0), δ (*q*₁,1), δ (*q*₁, *B*), δ (*q*₂,0), δ (*q*2,1), δ (*q*₂, *B*), ... \ldots *δ* (*q_k*,0), *δ* (*q_k*,1), *δ* (*qk*, *B*)
- Use the following encoding:

111 t_1 11 t_2 11 t_3 11 \ldots 11 t_{3k} 111

where t_i is the encoding of transition i as given on the next slide.

Encoding a transition

Recall transition looks like $\delta(q, a) = (p, b, L)$ *. So, encode as* ϵ state $> 1 <$ input $> 1 <$ new state $> 1 <$ new-symbol $> 1 <$ direction $>$

where

- state q_i represented by q_i represented by 0^i
- $0,1,B$ represented by $0, 00, 000$
- L, R, S represented by $0, 00, 000$

 $\delta\left(q_3,1\right)=\left(q_4,0,\!R\right)$ represented by <u>000</u> 1 <u>00</u>

$\overline{}$ 1 0000 1 0 ⏟ $\overline{}$ 1 00 $\overline{}$

*q*3 1 *q*4 0 *R*

Example Typical TM code:

-
- Begins, ends with 111
- Transitions separated by 11
- Fields within transition separated by 1
- Individual fields represented by 0s

11101010000100100110100100000101011 11 11 111

19

- Every TM is encoded by a unique element of ℕ
- Convention: elements of $\mathbb N$ that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let $\langle M \rangle$ mean the number that encodes M
- Conversely, let M_n be the TM with encoding n .

TMs are (binary) numbers

Three tapes

- Tape 1: holds input M and w demarcated with #; never changes
- Tape 2: simulates M's single tape
- Tape 3: holds M's current state

How *Mu* **works Configuration**

1	1	1	t_1	1	1	t_2
________	________	________	________	________		

Universal Turing Machine How *M* **works: Phase 1 (validate)** *^u*

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.
	- The beginning and ending must be enclosed in 111 's.
	- Substring 110^i | 0^j 1 does not appear twice.
	- Appropriate number of zeros and ones between 1's demarcating transition code

• Etc.

11000010100000100001...

Universal Turing Machine How *M* **works - Phase 2 (initialize)** *^u*

11101010000100100110100100000101011 111 # 100110 Tape 1 Tape 2 Tape 3

\$100110

Code for *M*

- Copy w to Tape 2
- Write 0 on Tape 3 indicating it is in the start state
- If at any time, Tape 3 holds 00 (or 000), then halt and accept (or reject)

Current contents of *M*'s tape

\$0

Current state of *M*

- Repeatedly simulate the steps of *M*
- Example: If tape 3 holds 0^i and tape 2 is scanning 1, then search for substring on tape 1. 110*ⁱ* 1001

Universal Turing Machine How *M* **works - Phase 3 (simulation)** *^u*

Current contents of *M*'s tape

\$0

Current state of *M*

Code for *M*

Universal Turing Machine How *M* **works - Phase 3 - (simulation, after a single move)** *^u*

- Check if 00 or 000 is on tape 3; if so, halt and accept or reject
- Otherwise, simulate the next move by searching for pattern. In this example, the next pattern $= 1100000101$

\$000110

Current contents of *M*'s tape

Current state of *M*

Code for *M*

Examples

https://rosettacode.org/wiki/Universal_Turing_machine#Python

• See:

Universal Turing Machine Examples