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Recap

• We have journeyed in four weeks through 
different models of computation 

• We asked the question last time:

• What is the most general model of 
computation we can have, which accepts 
the largest number of languages. 

• For this we introduced the Turing Machine. 
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Recap: High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far, 
no “counter-example.”

• We will look at some possible extensions today and show they amount to 
the same thing. 

• Every TM can be represented as a string. 

• The existence of a Universal Turing Machine, which is the model/inspiration 
for stored program computing. UTM can simulate any TM!

-> show an example
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Turing Machine 

• Input written on (infinite) one sided tape. 

• Special blank characters. 

• Finite state control (similar to DFA).

• Read character under head, write 
character out, move the head right or 
left (or stay).

4

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head 
(moves in both directions)

b b a a a a …… Input/Output Tape
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Transition function 
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Turing Machine 
Transition function 

δ : Q × Γ → Q × Γ × {L, R, S}

5

From state , on reading :  q a

• go to state p

• write b

• move head Left

• Missing transitions lead to hell state = “Blue screen of death” =  “Machine crashes.

symbol  
scanned

current 
state

new 
state

symbol 
to write

Direction to 
move on tape

                δ(q, a) = (p, b, L)



Turing Machine variants 
Equivalent Turing Machines

Several variations of a Turing machine: 

• Standard Turing machine (single infinite tape)

• Multi-track tapes 

• Bi-infinite tape

• Multiple heads 

• Multiple heads and tapes

6
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Multi-track Tapes
Suppose we have a TM with multiple tracks:

7

Turing machine variants 

1 1 0 0 0 0 …

H1

Tape 0

0 1 0 1 1 0 … Tape 1

0 1 0 0 1 1 … Tape 2

Is there an equivalent single-track TM?

H1

4 7 0 2 3 1 … Input/ Output 
Tape

New transition function:   δ : Q × Γ1 × Γ2 × Γ3 → Q × Γ1 × Γ2 × Γ3 × {L, R, S}

I bit I slot

"
-

&hits/slot
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Suppose we have a TM with tape that is bi-infinite:
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Infinite Bi-directional Tape
Suppose we have a TM with tape that is bi-infinite:

8

Turing machine variants 

Is there an equivalent one-sided TM?

Can model as multiple tapes. 

H1

-2 -1 0 +1 +2 +3 … Input/ Output 
Tape…

H1

0 +1 +2 +3 +4 +5 +6 … Positive index track

-1 -2 -3 -4 -5 -6 … Negative index track

* Marker Symbol indicates transition



Infinite Bi-directional Tape

9

Turing machine variants 

H1

⇌ 0 +1 -1 +2 -2 +3 -3 …+4

H1

-2 -1 0 +1 +2 +3 … Input/ Output 
Tape

Or as single tape interleaved with positive and negative indexes.

…

* Marker Symbol tracks/indicates which index we look at

Input/ Output Tape

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?



Multiple Read/Write Heads
What is the transition function for a TM with multiple heads and multiple tapes:
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Turing machine variants 

H1

1 1 0 0 0 0 … Input/ Output Tape 1

0 0 0 1 1 1 … Input/ Output Tape 2

H2

0 0 1 1 0 0 … Input/ Output Tape 3

H3

δ : ℚ × Γ1 × Γ2 × Γ3 → ℚ × Γ1 × Γ2 × Γ3 × {L, R}3 ⑭ = &
, XCXOz

↳ can have ↳ each head can
deferent alphabet more independently



Multiple Read/Write Heads
Suppose we have a TM with multiple heads:

11

Turing machine variants 

H1

1 1 0 0 0 0 … Input/ Output Tape

H2 H3

What does the transition function for the equivalent nominal TM look like?

δ : Q × Γ3 → Q × (Γ × {L, R})3
↑ hearsa still

more

independently
↳ same alphabet



Determinism in Turing Machines
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Determinism in Turing Machines
Deterministic vs Non-Deterministic 

13

Non-Deterministic

f(n)

accept

accept

reject…

Deterministic

…f(n)

accept or 
reject



Power of NTM vs. DTM?
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Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways: 

• Multiplicity of configuration of states 
1. Have the store multiple configurations of the NTM. 
2. At every timestep, process each configuration. Add configurations 

to the set if multiple paths exist. 

• Multiple Tapes - Can simulate NTM with 3-tape DTM: 
1. First tape holds original input 
2. Second used to simulate a particular computation of NTM 
3. Third tape encodes path in NTM computation tree.

14
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Universal Turing Machine

A single Turing Machine   that can compute anything computable!Mu

Takes as input: 

• the description of some other TM  M

• data  for  to run on w M
Outputs: 

• results of running M(w)

15

Introduction 



Universal Turing Machine
Some notation

: Turing machine 


: a string uniquely describing M (we will see that it can be thought of as a 
number) 


: An input string. 


: A unique string encoding both  and input .


M

⟨M⟩

w

⟨M, w⟩ M w

L(Mu) = {⟨M, w⟩ M is a TM and M accepts w}

16



Universal Turing Machine
Introduction 

We want to construct a Turing machine such that:

L (Mu) = {⟨M, w⟩ ∣ M accepts w}

 is a stored-program computer. It reads , parses it as a program  
and data , and executes  on data . 
Mu ⟨M, w⟩ M

w M w

17
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Universal Turing Machine
Introduction 

We want to construct a Turing machine such that:

L (Mu) = {⟨M, w⟩ ∣ M accepts w}

 is a stored-program computer. It reads , parses it as a program  
and data , and executes  on data . 
Mu ⟨M, w⟩ M

w M w

In other words,  simulates the run of  on .Mu M w

17



Coding of TMs
Lemma: If a language  over alphabet  is accepted by some  , then there 
is a one-tape TM  that accepts , such that

L {0,1} TM M
M′ L
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L {0,1} TM M
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•  Γ = {0,1,B}
• states numbered  1,...,k
•  is a unique start state q1
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•  is a unique halt/reject stateq3
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Coding of TMs
Lemma: If a language  over alphabet  is accepted by some  , then there 
is a one-tape TM  that accepts , such that

L {0,1} TM M
M′ L

•  Γ = {0,1,B}
• states numbered  1,...,k
•  is a unique start state q1

•  is a unique halt/accept state q2

•  is a unique halt/reject stateq3

Note: To represent a TM, we need only list its set of transitions - everything else is 
implicit by the above.

18

Universal Turing Machine

-can
be inferred

-



Listing Transition 

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

19

•  


• states numbered  


•  is a unique start state 


•  is a unique halt/accept state 


•  is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3



Listing Transition 

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)

19

•  


• states numbered  


•  is a unique start state 


•  is a unique halt/accept state 


•  is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3



Listing Transition 

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)
• Use the following encoding:

19

•  


• states numbered  


•  is a unique start state 


•  is a unique halt/accept state 


•  is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3



Listing Transition 
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Listing Transition 

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)
• Use the following encoding:

 111 t1 11 t2 11 t3 11 . . . 11 tk 111
where  is the encoding of transition  as given on the next slide.ti i

19

•  


• states numbered  


•  is a unique start state 


•  is a unique halt/accept state 


•  is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3

->
double ones demarcate
transition encodings

000 0



Encoding a transition

Recall transition looks like  . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >
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Encoding a transition

Recall transition looks like  . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where  
• state  represented by  qi 0i

•  represented by  0,1,B 0, 00, 000
•  represented by L, R, S 0, 00, 000

 represented by δ (q3,1) = (q4,0,R) 000⏟
q3

1 00⏟
1

1 0000
⏟

q4

1 0
⏟
0

1 00⏟
R

20
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Example
Typical TM code:

11101010000100100110100100000101011 . . . . . 11 . . . . . . . 11 . . . . . . . 111

• Begins, ends with  111

• Transitions separated by  11

• Fields within transition separated by  1

• Individual fields represented by s0

21
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• Every TM is encoded by a unique element of ℕ

• Convention: elements of  that do not correspond to any TM encoding 
represent the “null TM” that accepts nothing. 

ℕ

• Thus, every TM is a number, and vice versa 

• Let mean the number that encodes  < M > M

• Conversely, let  be the TM with encoding .Mn n

TMs are (binary) numbers
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How  worksMu

Three tapes

• Tape 1: holds input  and  demarcated with #; never changes M w

• Tape 2: simulates ’s single tape M

• Tape 3: holds ’s current stateM

23

11 t11 11 t2 11 … 1t3k 1 1 # w

Input M Input w

Configuration
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How  works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
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• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones. 

• The beginning and ending must be enclosed in ’s. 111
• Substring  does not appear twice. 110i |0 j1

24
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• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones. 
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• Appropriate number of zeros and ones between ’s demarcating transition 
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• There should be no more than three consecutive ones. 
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Universal Turing Machine 
How  works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones. 

• The beginning and ending must be enclosed in ’s. 111
• Substring  does not appear twice. 110i |0 j1
• Appropriate number of zeros and ones between ’s demarcating transition 

code
1

 11000010100000100001...
• Etc. 

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

se
-> Not part of tay
O alphabet
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How  works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 . . . . . . 111 # 100110 Tape 1
Code for M

$100110 Tape 2
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Universal Turing Machine 
How  works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 . . . . . . 111 # 100110 Tape 1
Code for M

$100110 Tape 2
Current contents of ’s tapeM

$0 Tape 3
Current state of M

• Copy  to Tape 2w
• Write  on Tape 3 indicating it is in the start state0
• If at any time, Tape 3 holds 00 (or 000), then halt and accept (or reject)



• Repeatedly simulate the steps of M
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Universal Turing Machine 
How  works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 . . . . . . 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >



• Repeatedly simulate the steps of M

• Example: If tape 3 holds  and tape 2 is scanning 1, then search for substring 
 on tape 1.

0i

110i1001
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How  works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 . . . . . . 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

if i = 1



• Repeatedly simulate the steps of M

• Example: If tape 3 holds  and tape 2 is scanning 1, then search for substring 
 on tape 1.

0i

110i1001
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Universal Turing Machine 
How  works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 . . . . . . 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

if i = 1 What to do next
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How  works - Phase 3 - (simulation, after a single move)Mu
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Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >
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write a 0 under tape 2’s head



• Check if 00 or 000 is on tape 3; if so, halt and accept or reject
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• Check if 00 or 000 is on tape 3; if so, halt and accept or reject

• Otherwise, simulate the next move by searching for pattern. In this example, 
the next pattern = 1100000101
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Keeps repeating … 
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Examples
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https://rosettacode.org/wiki/Universal_Turing_machine#Python
https://pastebin.com/raw/JqZGrddK


