
Universal Turing Machines

All mistakes are my own! - Ivan Abraham (Fall 2024)

Sides based on material by Kani, Erickson, Chekuri, et. al.

Recap

• We have journeyed in four weeks through
different models of computation

2

regular

context free

context sensitive

recursively enumerable

Recap

• We have journeyed in four weeks through
different models of computation

• We asked the question last time:

2

regular

context free

context sensitive

recursively enumerable

Recap

• We have journeyed in four weeks through
different models of computation

• We asked the question last time:

• What is the most general model of
computation we can have, which accepts
the largest number of languages.

2

regular

context free

context sensitive

recursively enumerable

Recap

• We have journeyed in four weeks through
different models of computation

• We asked the question last time:

• What is the most general model of
computation we can have, which accepts
the largest number of languages.

• For this we introduced the Turing Machine.

2

regular

context free

context sensitive

recursively enumerable

Turing Machine

3

Recap: High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

Turing Machine

3

Recap: High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

• We will look at some possible extensions today and show they amount to
the same thing.

Turing Machine

3

Recap: High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

• We will look at some possible extensions today and show they amount to
the same thing.

• Every TM can be represented as a string.

Turing Machine

3

Recap: High level goals

• Church-Turing Thesis: TMs are the most general computing devices. So far,
no “counter-example.”

• We will look at some possible extensions today and show they amount to
the same thing.

• Every TM can be represented as a string.

• The existence of a Universal Turing Machine, which is the model/inspiration
for stored program computing. UTM can simulate any TM!

-> show an example

Turing Machine

• Input written on (infinite) one sided tape.

4

b b a a a a …… Input/Output Tape

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

4

b b a a a a …… Input/Output Tape

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

4

q2 qn

q1 q0

q3 …

Finite control

b b a a a a …… Input/Output Tape

Turing Machine

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

• Read character under head, write
character out, move the head right or
left (or stay).

4

q1

q2 qn

q1 q0

q3 …

Finite control

Reading and Writing Head
(moves in both directions)

b b a a a a …… Input/Output Tape

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

5

From state , on reading : q a

• go to state p

• write b

• move head Left

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

5

From state , on reading : q a

• go to state p

• write b

• move head Left

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

5

From state , on reading : q a

• go to state p

• write b

• move head Left

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

 δ(q, a) = (p, b, L)

Turing Machine
Transition function

δ : Q × Γ → Q × Γ × {L, R, S}

5

From state , on reading : q a

• go to state p

• write b

• move head Left

• Missing transitions lead to hell state = “Blue screen of death” = “Machine crashes.

symbol
scanned

current
state

new
state

symbol
to write

Direction to
move on tape

 δ(q, a) = (p, b, L)

Turing Machine variants
Equivalent Turing Machines

Several variations of a Turing machine:

• Standard Turing machine (single infinite tape)

• Multi-track tapes

• Bi-infinite tape

• Multiple heads

• Multiple heads and tapes

6

Multi-track Tapes
Suppose we have a TM with multiple tracks:

7

Turing machine variants

Multi-track Tapes
Suppose we have a TM with multiple tracks:

7

Turing machine variants

1 1 0 0 0 0 …

H1

Tape 0

0 1 0 1 1 0 … Tape 1

0 1 0 0 1 1 … Tape 2

Multi-track Tapes
Suppose we have a TM with multiple tracks:

7

Turing machine variants

1 1 0 0 0 0 …

H1

Tape 0

0 1 0 1 1 0 … Tape 1

0 1 0 0 1 1 … Tape 2

New transition function: δ : Q × Γ1 × Γ2 × Γ3 → Q × Γ1 × Γ2 × Γ3 × {L, R, S}
-

↓ Each tapeone head
can have it

habet
own

Multi-track Tapes
Suppose we have a TM with multiple tracks:

7

Turing machine variants

1 1 0 0 0 0 …

H1

Tape 0

0 1 0 1 1 0 … Tape 1

0 1 0 0 1 1 … Tape 2

Is there an equivalent single-track TM?

New transition function: δ : Q × Γ1 × Γ2 × Γ3 → Q × Γ1 × Γ2 × Γ3 × {L, R, S}

Multi-track Tapes
Suppose we have a TM with multiple tracks:

7

Turing machine variants

1 1 0 0 0 0 …

H1

Tape 0

0 1 0 1 1 0 … Tape 1

0 1 0 0 1 1 … Tape 2

Is there an equivalent single-track TM?

H1

4 7 0 2 3 1 … Input/ Output
Tape

New transition function: δ : Q × Γ1 × Γ2 × Γ3 → Q × Γ1 × Γ2 × Γ3 × {L, R, S}

I bit I slot

"
-

&hits/slot

Infinite Bi-directional Tape
Suppose we have a TM with tape that is bi-infinite:

8

Turing machine variants

Is there an equivalent one-sided TM?

H1

-2 -1 0 +1 +2 +3 … Input/ Output
Tape…

Infinite Bi-directional Tape
Suppose we have a TM with tape that is bi-infinite:

8

Turing machine variants

Is there an equivalent one-sided TM?

H1

-2 -1 0 +1 +2 +3 … Input/ Output
Tape…

H1

0 +1 +2 +3 +4 +5 +6 … Positive index track

-1 -2 -3 -4 -5 -6 … Negative index track

* Marker Symbol indicates transition

Infinite Bi-directional Tape
Suppose we have a TM with tape that is bi-infinite:

8

Turing machine variants

Is there an equivalent one-sided TM?

Can model as multiple tapes.

H1

-2 -1 0 +1 +2 +3 … Input/ Output
Tape…

H1

0 +1 +2 +3 +4 +5 +6 … Positive index track

-1 -2 -3 -4 -5 -6 … Negative index track

* Marker Symbol indicates transition

Infinite Bi-directional Tape

9

Turing machine variants

H1

⇌ 0 +1 -1 +2 -2 +3 -3 …+4

H1

-2 -1 0 +1 +2 +3 … Input/ Output
Tape

Or as single tape interleaved with positive and negative indexes.

…

* Marker Symbol tracks/indicates which index we look at

Input/ Output Tape

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

Multiple Read/Write Heads
What is the transition function for a TM with multiple heads and multiple tapes:

10

Turing machine variants

H1

1 1 0 0 0 0 … Input/ Output Tape 1

0 0 0 1 1 1 … Input/ Output Tape 2

H2

0 0 1 1 0 0 … Input/ Output Tape 3

H3

δ : ℚ × Γ1 × Γ2 × Γ3 → ℚ × Γ1 × Γ2 × Γ3 × {L, R}3 ⑭ = &
, XCXOz

↳ can have ↳ each head can
deferent alphabet more independently

Multiple Read/Write Heads
Suppose we have a TM with multiple heads:

11

Turing machine variants

H1

1 1 0 0 0 0 … Input/ Output Tape

H2 H3

What does the transition function for the equivalent nominal TM look like?

δ : Q × Γ3 → Q × (Γ × {L, R})3
↑ hearsa still

more

independently
↳ same alphabet

Determinism in Turing Machines

12

Determinism in Turing Machines
Deterministic vs Non-Deterministic

13

Non-Deterministic

f(n)

accept

accept

reject…

Deterministic

…f(n)

accept or
reject

Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways:

• Multiplicity of configuration of states
1. Have the store multiple configurations of the NTM.

14

Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways:

• Multiplicity of configuration of states
1. Have the store multiple configurations of the NTM.
2. At every timestep, process each configuration. Add configurations

to the set if multiple paths exist.

14

Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways:

• Multiplicity of configuration of states
1. Have the store multiple configurations of the NTM.
2. At every timestep, process each configuration. Add configurations

to the set if multiple paths exist.

• Multiple Tapes - Can simulate NTM with 3-tape DTM:

14

Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways:

• Multiplicity of configuration of states
1. Have the store multiple configurations of the NTM.
2. At every timestep, process each configuration. Add configurations

to the set if multiple paths exist.

• Multiple Tapes - Can simulate NTM with 3-tape DTM:
1. First tape holds original input

14

Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways:

• Multiplicity of configuration of states
1. Have the store multiple configurations of the NTM.
2. At every timestep, process each configuration. Add configurations

to the set if multiple paths exist.

• Multiple Tapes - Can simulate NTM with 3-tape DTM:
1. First tape holds original input
2. Second used to simulate a particular computation of NTM

14

Power of NTM vs. DTM?
A DTM can simulate a NTM in the following ways:

• Multiplicity of configuration of states
1. Have the store multiple configurations of the NTM.
2. At every timestep, process each configuration. Add configurations

to the set if multiple paths exist.

• Multiple Tapes - Can simulate NTM with 3-tape DTM:
1. First tape holds original input
2. Second used to simulate a particular computation of NTM
3. Third tape encodes path in NTM computation tree.

14

Universal Turing Machine

A single Turing Machine that can compute anything computable!Mu

15

Introduction

Universal Turing Machine

A single Turing Machine that can compute anything computable!Mu

Takes as input:

15

Introduction

Universal Turing Machine

A single Turing Machine that can compute anything computable!Mu

Takes as input:

• the description of some other TM M

15

Introduction

Universal Turing Machine

A single Turing Machine that can compute anything computable!Mu

Takes as input:

• the description of some other TM M

• data for to run on w M

15

Introduction

Universal Turing Machine

A single Turing Machine that can compute anything computable!Mu

Takes as input:

• the description of some other TM M

• data for to run on w M
Outputs:

15

Introduction

Universal Turing Machine

A single Turing Machine that can compute anything computable!Mu

Takes as input:

• the description of some other TM M

• data for to run on w M
Outputs:

• results of running M(w)

15

Introduction

Universal Turing Machine
Some notation

: Turing machine

: a string uniquely describing M (we will see that it can be thought of as a
number)

: An input string.

: A unique string encoding both and input .

M

⟨M⟩

w

⟨M, w⟩ M w

L(Mu) = {⟨M, w⟩ M is a TM and M accepts w}

16

Universal Turing Machine
Introduction

We want to construct a Turing machine such that:

L (Mu) = {⟨M, w⟩ ∣ M accepts w}

 is a stored-program computer. It reads , parses it as a program
and data , and executes on data .
Mu ⟨M, w⟩ M

w M w

17

language of the
↑ universal Turing

machin

Universal Turing Machine
Introduction

We want to construct a Turing machine such that:

L (Mu) = {⟨M, w⟩ ∣ M accepts w}

 is a stored-program computer. It reads , parses it as a program
and data , and executes on data .
Mu ⟨M, w⟩ M

w M w

In other words, simulates the run of on .Mu M w

17

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

18

Universal Turing Machine

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

• Γ = {0,1,B}

18

Universal Turing Machine

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

• Γ = {0,1,B}
• states numbered 1,...,k

18

Universal Turing Machine

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

• Γ = {0,1,B}
• states numbered 1,...,k
• is a unique start state q1

18

Universal Turing Machine

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

• Γ = {0,1,B}
• states numbered 1,...,k
• is a unique start state q1

• is a unique halt/accept state q2

18

Universal Turing Machine

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

• Γ = {0,1,B}
• states numbered 1,...,k
• is a unique start state q1

• is a unique halt/accept state q2

• is a unique halt/reject stateq3

18

Universal Turing Machine

-> augment tupe alphabetol blank

->K can be large

typos
fixed & can think of it as "a "normalization

Coding of TMs
Lemma: If a language over alphabet is accepted by some , then there
is a one-tape TM that accepts , such that

L {0,1} TM M
M′ L

• Γ = {0,1,B}
• states numbered 1,...,k
• is a unique start state q1

• is a unique halt/accept state q2

• is a unique halt/reject stateq3

Note: To represent a TM, we need only list its set of transitions - everything else is
implicit by the above.

18

Universal Turing Machine

-can
be inferred

-

Listing Transition

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

19

•

• states numbered

• is a unique start state

• is a unique halt/accept state

• is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3

Listing Transition

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)

19

•

• states numbered

• is a unique start state

• is a unique halt/accept state

• is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3

Listing Transition

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)
• Use the following encoding:

19

•

• states numbered

• is a unique start state

• is a unique halt/accept state

• is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3

Listing Transition

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)
• Use the following encoding:

 111 t1 11 t2 11 t3 11 . . . 11 tk 111

19

•

• states numbered

• is a unique start state

• is a unique halt/accept state

• is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3

triple ones mark beginning and
-

O g ending of in encoding

Listing Transition

• Use the following order:

 δ (q1,0), δ (q1,1), δ (q1, B), δ (q2,0), δ (q2,1), δ (q2, B), …

…δ (qk,0), δ (qk,1), δ (qk, B)
• Use the following encoding:

 111 t1 11 t2 11 t3 11 . . . 11 tk 111
where is the encoding of transition as given on the next slide.ti i

19

•

• states numbered

• is a unique start state

• is a unique halt/accept state

• is a unique halt/reject state

Γ = {0,1,B}
1,...,k

q1

q2

q3

->
double ones demarcate
transition encodings

000 0

Encoding a transition

Recall transition looks like . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

20

Encoding a transition

Recall transition looks like . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where

20

Encoding a transition

Recall transition looks like . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where
• state represented by qi 0i

20

Encoding a transition

Recall transition looks like . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where
• state represented by qi 0i

• represented by 0,1,B 0, 00, 000

20

Encoding a transition

Recall transition looks like . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where
• state represented by qi 0i

• represented by 0,1,B 0, 00, 000
• represented by L, R, S 0, 00, 000

20

Encoding a transition

Recall transition looks like . So, encode asδ(q, a) = (p, b, L)
< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where
• state represented by qi 0i

• represented by 0,1,B 0, 00, 000
• represented by L, R, S 0, 00, 000

 represented by δ (q3,1) = (q4,0,R) 000⏟
q3

1 00⏟
1

1 0000
⏟

q4

1 0
⏟
0

1 00⏟
R

20

respectively
respectively

Example
Typical TM code:

11101010000100100110100100000101011 11 11 111

21

Example
Typical TM code:

11101010000100100110100100000101011 11 11 111

• Begins, ends with 111

21

Example
Typical TM code:

11101010000100100110100100000101011 11 11 111

• Begins, ends with 111

• Transitions separated by 11

21

Example
Typical TM code:

11101010000100100110100100000101011 11 11 111

• Begins, ends with 111

• Transitions separated by 11

• Fields within transition separated by 1

21

Example
Typical TM code:

11101010000100100110100100000101011 11 11 111

• Begins, ends with 111

• Transitions separated by 11

• Fields within transition separated by 1

• Individual fields represented by s0

21

22

• Every TM is encoded by a unique element of ℕ

TMs are (binary) numbers

22

• Every TM is encoded by a unique element of ℕ

• Convention: elements of that do not correspond to any TM encoding
represent the “null TM” that accepts nothing.

ℕ

TMs are (binary) numbers

22

• Every TM is encoded by a unique element of ℕ

• Convention: elements of that do not correspond to any TM encoding
represent the “null TM” that accepts nothing.

ℕ

• Thus, every TM is a number, and vice versa

TMs are (binary) numbers

22

• Every TM is encoded by a unique element of ℕ

• Convention: elements of that do not correspond to any TM encoding
represent the “null TM” that accepts nothing.

ℕ

• Thus, every TM is a number, and vice versa

• Let mean the number that encodes < M > M

TMs are (binary) numbers

22

• Every TM is encoded by a unique element of ℕ

• Convention: elements of that do not correspond to any TM encoding
represent the “null TM” that accepts nothing.

ℕ

• Thus, every TM is a number, and vice versa

• Let mean the number that encodes < M > M

• Conversely, let be the TM with encoding .Mn n

TMs are (binary) numbers

How worksMu

Three tapes

23

Configuration

How worksMu

Three tapes

• Tape 1: holds input and demarcated with #; never changes M w

23

Configuration

How worksMu

Three tapes

• Tape 1: holds input and demarcated with #; never changes M w

23

11 t11 11 t2 11 … 1t3k 1 1 # w

Input M Input w

Configuration

How worksMu

Three tapes

• Tape 1: holds input and demarcated with #; never changes M w

• Tape 2: simulates ’s single tape M

23

11 t11 11 t2 11 … 1t3k 1 1 # w

Input M Input w

Configuration

How worksMu

Three tapes

• Tape 1: holds input and demarcated with #; never changes M w

• Tape 2: simulates ’s single tape M

• Tape 3: holds ’s current stateM

23

11 t11 11 t2 11 … 1t3k 1 1 # w

Input M Input w

Configuration

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones.

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones.

• The beginning and ending must be enclosed in ’s. 111

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones.

• The beginning and ending must be enclosed in ’s. 111
• Substring does not appear twice. 110i |0 j1

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

prevents two different
transitions
-

-
from the same state

on the

same inpot

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones.

• The beginning and ending must be enclosed in ’s. 111
• Substring does not appear twice. 110i |0 j1
• Appropriate number of zeros and ones between ’s demarcating transition

code
1

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones.

• The beginning and ending must be enclosed in ’s. 111
• Substring does not appear twice. 110i |0 j1
• Appropriate number of zeros and ones between ’s demarcating transition

code
1

 11000010100000100001...

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

Universal Turing Machine
How works: Phase 1 (validate)Mu

• Check if Tape 1 holds a valid TM by examining < M >
• There should be no more than three consecutive ones.

• The beginning and ending must be enclosed in ’s. 111
• Substring does not appear twice. 110i |0 j1
• Appropriate number of zeros and ones between ’s demarcating transition

code
1

 11000010100000100001...
• Etc.

24

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

se
-> Not part of tay
O alphabet

25

Universal Turing Machine
How works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1
Code for M

25

Universal Turing Machine
How works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1
Code for M

• Copy to Tape 2w

25

Universal Turing Machine
How works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1
Code for M

$100110 Tape 2
Current contents of ’s tapeM

• Copy to Tape 2w

25

Universal Turing Machine
How works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1
Code for M

$100110 Tape 2
Current contents of ’s tapeM

• Copy to Tape 2w
• Write on Tape 3 indicating it is in the start state0

25

Universal Turing Machine
How works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1
Code for M

$100110 Tape 2
Current contents of ’s tapeM

$0 Tape 3
Current state of M

• Copy to Tape 2w
• Write on Tape 3 indicating it is in the start state0

25

Universal Turing Machine
How works - Phase 2 (initialize)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1
Code for M

$100110 Tape 2
Current contents of ’s tapeM

$0 Tape 3
Current state of M

• Copy to Tape 2w
• Write on Tape 3 indicating it is in the start state0
• If at any time, Tape 3 holds 00 (or 000), then halt and accept (or reject)

• Repeatedly simulate the steps of M

26

Universal Turing Machine
How works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

• Repeatedly simulate the steps of M

• Example: If tape 3 holds and tape 2 is scanning 1, then search for substring
 on tape 1.

0i

110i1001

26

Universal Turing Machine
How works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

• Repeatedly simulate the steps of M

• Example: If tape 3 holds and tape 2 is scanning 1, then search for substring
 on tape 1.

0i

110i1001

26

Universal Turing Machine
How works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

• Repeatedly simulate the steps of M

• Example: If tape 3 holds and tape 2 is scanning 1, then search for substring
 on tape 1.

0i

110i1001

26

Universal Turing Machine
How works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

if i = 1

• Repeatedly simulate the steps of M

• Example: If tape 3 holds and tape 2 is scanning 1, then search for substring
 on tape 1.

0i

110i1001

26

Universal Turing Machine
How works - Phase 3 (simulation)Mu

11101010000100100110100100000101011 111 # 100110 Tape 1

$100110

$0

Tape 2

Tape 3

Current contents of ’s tapeM

Current state of M

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

if i = 1 What to do next

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110
Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110
Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110

$000110
Current contents of ’s tapeM

Code for M

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110

$000110
Current contents of ’s tapeM

Code for M copy new state 00000 to tape 3

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110

$000110
Current contents of ’s tapeM

$00000
Current state of M

Code for M copy new state 00000 to tape 3

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

• Check if 00 or 000 is on tape 3; if so, halt and accept or reject

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110

$000110
Current contents of ’s tapeM

$00000
Current state of M

Code for M copy new state 00000 to tape 3

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

• Check if 00 or 000 is on tape 3; if so, halt and accept or reject

• Otherwise, simulate the next move by searching for pattern. In this example,
the next pattern = 1100000101

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110

$000110
Current contents of ’s tapeM

$00000
Current state of M

Code for M copy new state 00000 to tape 3

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

• Check if 00 or 000 is on tape 3; if so, halt and accept or reject

• Otherwise, simulate the next move by searching for pattern. In this example,
the next pattern = 1100000101

27

Universal Turing Machine
How works - Phase 3 - (simulation, after a single move)Mu

11101010000100100110100100000101011 111 # 100110

$000110
Current contents of ’s tapeM

$00000
Current state of M

Code for M copy new state 00000 to tape 3

< state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

move tape 2 head to the right

write a 0 under tape 2’s head

Keeps repeating …

28

Examples

29

https://rosettacode.org/wiki/Universal_Turing_machine#Python
https://pastebin.com/raw/JqZGrddK

