All mistakes are my own! - Ivan Abraham (Fall 2024)

Image by ChatGPT (probably collaborated with DALL-E)

Universal Turing Machines Sides based on material by Kani, Erickson, Chekuri, et. al.

• We have journeyed in four weeks through different models of computation

- We have journeyed in four weeks through different models of computation
- We asked the question last time:

- We have journeyed in four weeks through different models of computation
- We asked the question last time:
	- What is the most general model of computation we can have, which accepts the largest number of languages.

- We have journeyed in four weeks through different models of computation
- We asked the question last time:
	- What is the most general model of computation we can have, which accepts the largest number of languages.
- For this we introduced the Turing Machine.

no "counter-example."

• Church-Turing Thesis: TMs are the most general computing devices. So far,

- no "counter-example."
	- the same thing.

• Church-Turing Thesis: TMs are the most general computing devices. So far,

• We will look at some possible extensions today and show they amount to

- no "counter-example."
	- the same thing.
- Every TM can be represented as a string.

• Church-Turing Thesis: TMs are the most general computing devices. So far,

• We will look at some possible extensions today and show they amount to

• We will look at some possible extensions today and show they amount to

ns today and snow they an

or show an example

- no "counter-example."
	- the same thing.
- Every TM can be represented as a string.
- for stored program computing. UTM can simulate any TM!

• Church-Turing Thesis: TMs are the most general computing devices. So far,

• The existence of a Universal Turing Machine, which is the model/inspiration

• Input written on (infinite) one sided tape.

• Input written on (infinite) one sided tape. • Special blank characters.

• Input written on (infinite) one sided tape.

• Special blank characters.

• Finite state control (similar to DFA).

Finite control

- Special blank characters.
- Finite state control (similar to DFA).

• Read character under head, write character out, move the head right or left (or stay).

• Input written on (infinite) one sided tape.

From state *q*, on reading *a*:

- go to state *p*
- write *b*
- move head *Left*

δ : $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$

From state *q*, on reading *a*:

- go to state *p*
- write *b*
- move head *Left*

symbol

scanned

From state *q*, on reading *a*:

- go to state *p*
- write *b*
- move head *Left*

symbol

scanned

$$
\delta(q, a) = (p, b, L)
$$

From state *q*, on reading *a*:

- go to state *p*
- write *b*
- move head *Left*
-

symbol

scanned

$$
\delta(q, a) = (p, b, L)
$$

• Missing transitions lead to hell state = "Blue screen of death" = "Machine crashes.

Turing Machine variants Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes
- Bi-infinite tape
- Multiple heads
- Multiple heads and tapes

Multi-track Tapes Turing machine variants

Multi-track Tapes Turing machine variants

Multi-track Tapes Turing machine variants

New transition function: *δ* : *Q* × Γ¹ **り**

 $\times \Gamma_2 \times \Gamma_3 \rightarrow Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{L, R, S\}$ one head cach tape each tupe
can have it habet own

Multi-track Tapes Turing machine variants

Is there an equivalent single-track TM?

New transition function: δ : $Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \rightarrow Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{L, R, S\}$

Multi-track Tapes Turing machine variants

Is there an equivalent single-track TM?

New transition function: $\delta: Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \to Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{L, R, S\}$

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

$$
\begin{array}{c} \cdot \cdot \cdot & \boxed{\square \hspace{.1cm} \square \hs
$$

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

$$
\begin{array}{|c|c|c|c|}\n\hline\n\text{...} & \text{...} \\
\hline\n\end{array}
$$

-
- -1 -2 -3 -4 -5 -6 \Box \Box ... Negative index track

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

Can model as multiple tapes.

$$
\begin{array}{c} \begin{array}{|c|c|c|c|}\n \hline\n & -2 & -1 & 0 & +1 \\
\hline\n & -
$$

-
- -1 -2 -3 -4 -5 -6 \Box \Box ... Negative index track

$$
\left(\begin{array}{c|c}\n\hline\n\end{array}\right) \begin{array}{c|c}\n\hline\n\end{array}\right) \begin{array}{c|c}\n\hline\n\end{array}\n\leftarrow H_1
$$

*H*1 …

Or as single tape interleaved with positive and negative indexes.

* Marker Symbol tracks/indicates which index we look at

Suppose we have a TM with tape that is bi-infinite:

Is there an equivalent one-sided TM?

10 Un can have alphalset 10 move independently

What is the transition function for a TM with multiple heads and multiple tapes:

Multiple Read/Write Heads Turing machine variants

Multiple Read/Write Heads Turing machine variants

What does the transition function for the equivalent nominal TM look like? ↳ same alphabet

Determinism in Turing Machines

Determinism in Turing Machines Deterministic vs Non-Deterministic

A DTM can simulate a NTM in the following ways:

- **Multiplicity of configuration of states**
	- 1. Have the store multiple configurations of the NTM.

A DTM can simulate a NTM in the following ways:

- **Multiplicity of configuration of states**
	- 1. Have the store multiple configurations of the NTM.
	- 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.

A DTM can simulate a NTM in the following ways:

- **Multiplicity of configuration of states**
	- 1. Have the store multiple configurations of the NTM.
	- 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.
- **Multiple Tapes** Can simulate NTM with 3-tape DTM:

- A DTM can simulate a NTM in the following ways:
	- **Multiplicity of configuration of states**
		- 1. Have the store multiple configurations of the NTM.
		- 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.
	- **Multiple Tapes** Can simulate NTM with 3-tape DTM:
		- 1. First tape holds original input

- A DTM can simulate a NTM in the following ways:
	- **Multiplicity of configuration of states**
		- 1. Have the store multiple configurations of the NTM.
		- 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.
	- **Multiple Tapes** Can simulate NTM with 3-tape DTM:
		- 1. First tape holds original input
		- 2. Second used to simulate a particular computation of NTM
Power of NTM vs. DTM?

- A DTM can simulate a NTM in the following ways:
	- **Multiplicity of configuration of states**
		- 1. Have the store multiple configurations of the NTM.
		- 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.
	- **Multiple Tapes** Can simulate NTM with 3-tape DTM:
		- 1. First tape holds original input
		- 2. Second used to simulate a particular computation of NTM
		- 3. Third tape encodes path in NTM computation tree.

Universal Turing Machine Introduction

A single Turing Machine M_{μ} that can compute anything computable!

Universal Turing Machine Introduction

Universal Turing Machine Introduction

• the description of some other TM *M*

Universal Turing Machine Introduction

- the description of some other TM *M*
- data *w* for *M* to run on

Universal Turing Machine Introduction

- the description of some other TM *M*
- data *w* for *M* to run on

Outputs:

Universal Turing Machine Introduction

- the description of some other TM *M*
- data *w* for *M* to run on

Outputs:

• results of running *M*(*w*)

Universal Turing Machine Some notation

 $\langle M \rangle$: a string uniquely describing M (we will see that it can be thought of as a number)

: Turing machine *M*

: An input string. *w*

 $\langle M, w \rangle$: A unique string encoding both M and input w .

$L(M_u) = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Universal Turing Machine Introduction

We want to construct a Turing machine such that:

and data w , and executes M on data w .

- $L(M_u) = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$ language of the ↑ universal Turing machin
- $M_{\overline{u}}$ is a stored-program computer. It reads $\langle M, w \rangle$, parses it as a program M

Universal Turing Machine Introduction

We want to construct a Turing machine such that:

and data w , and executes M on data w .

In other words, M_{μ} simulates the run of M on w.

-
- $L(M_u) = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$
- $M_{\overline{u}}$ is a stored-program computer. It reads $\langle M, w \rangle$, parses it as a program M
	-

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there is a one-tape TM M' that accepts L , such that

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there is a one-tape TM M' that accepts L , such that

• $\Gamma = \{0, 1, B\}$

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there is a one-tape TM M' that accepts L , such that

$$
\bullet \ \Gamma = \{0,1,B\}
$$

• states numbered 1,...,*k*

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there is a one-tape TM M' that accepts L , such that

- $\Gamma = \{0, 1, B\}$
- states numbered 1,...,*k*
- q_1 is a unique start state

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there is a one-tape TM M' that accepts L , such that

- $\Gamma = \{0, 1, B\}$
- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

is a one-tape TM M' that accepts L , such that • $\Gamma = \{0, 1, B\}$ - > augment tupe alphabet of blank ye appressed be large

- Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there
	-
	-

& can think of it as " a "normalization

- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

Note: To represent a TM, we need only list its set of transitions - everything else is implicit by the above. 2 am be inferred s a one-tape TMM

• $\Gamma = \{0,1,B\}$

• states numbers of the states numbers of q_1 is a unique of q_2 is a unique of q_3 is a unique of the state of th

$$
\bullet \ \Gamma = \{0,1,B\}
$$

Coding of TMs Universal Turing Machine

Lemma: If a language L over alphabet $\{0,1\}$ is accepted by some TMM , then there is a one-tape TM M' that accepts L , such that

be inferred

• Use the following order:

$$
\delta(q_1,0), \delta(q_1,1), \delta(q_1,B), \delta(q
$$

- $\Gamma = \{0, 1, B\}$
- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

 g_2 , $\left($ θ), δ $\left($ q_2 , $\left($ θ ₁, δ $\left($ $q_2,$ β $\right)$, …

• Use the following order:

 $\delta(q_1,0), \delta(q_1,1), \delta(q_1, B), \delta(q_2,0), \delta(q_2,1), \delta(q_2, B), \ldots$ \dots *δ* $(q_k,0), \delta(q_k,1), \delta(q_k, B)$

- $\Gamma = \{0, 1, B\}$
- states numbered $1,...,k$
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

- Use the following order:
	- $\delta(q_1,0), \delta(q_1,1), \delta(q_1, B), \delta(q_2,0), \delta(q_2,1), \delta(q_2, B), \ldots$ $\dots \delta(q_k,0), \delta(q_k,1), \delta(q_k, B)$
- Use the following encoding:
- $\Gamma = \{0, 1, B\}$
- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

- Use the following order:
	- δ (*q*₁,0), δ (*q*₁,1), δ (*q*₁, *B*), δ (*q*₂,0), δ (*q*₂,1), δ (*q*₂, *B*), … $\dots \delta(q_k,0), \delta(q_k,1), \delta(q_k, B)$
- Use the following encoding: $(11) t_1 11 t_2 11 t_3 11 ... 11 t_k 111$
- $\Gamma = \{0, 1, B\}$
- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

triple ones mark beginning and See the following encoding:
 $(11)t_1 11 t_2 11 t_3 11 ... 11 t_k(111)$ and $\begin{bmatrix} 1 & 0 \end{bmatrix}$ of $\begin{bmatrix} 1 & 0 \end{bmatrix}$ encoding

- Use the following order:
	- $\delta(q_1,0), \delta(q_1,1), \delta(q_1, B), \delta(q_2,0), \delta(q_2,1), \delta(q_2, B), ...$ $-\frac{\delta (q_2,0)}{q_1}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
	- $\dots \delta(q_k,0), \delta(q_k,1), \delta(q_k, B)$
- Use the following encoding: $111 t_1 11 t_2 11 t_3 11... (1) t_k 111$ (1) , (1) , (1) , (1) , (1) , (1)
- $\Gamma = \{0, 1, B\}$
- states numbered 1,...,*k*
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

double ones demarcate transition encodings

where t_i is the encoding of transition i as given on the next slide.

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as

\le state > 1 \le input > 1 \le new state > 1 \le new-symbol > 1 \le direction $>$

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction > where

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where

• state q_i represented by 0^i

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where

- state q_i represented by 0^i
- 0,1,*B* represented by 0, 00, 000

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

where

- state q_i represented by 0^i
- \cdot 0,1,*B* represented by 0, 00, 000
- L, R, S represented by $0, 00, 000$

Recall transition looks like $\delta(q, a) = (p, b, L)$. So, encode as ϵ state $> 1 <$ input $> 1 <$ new state $> 1 <$ new-symbol $> 1 <$ direction $>$

where

- state q_i represented by 0^i
- $0,1,B$ represented by $0,00,000$ σ
- L, R, S represented by $0, 00, 000$

 $\delta(q_3,1) = (q_4,0,R)$ represented by <u>000</u> 1 00

*q*3 1 ⏟ *q*4 0 *R*

respectively respectively

 $\overline{}$ 1 0000 1 0 $\overline{}$ 1 00 $\overline{}$

11101010000100100110100100000101011 11 11 111

-
- Begins, ends with 111

11101010000100100110100100000101011 11 11 111

-
- Begins, ends with 111
- Transitions separated by 11

11101010000100100110100100000101011 11 11 111

-
- Begins, ends with 111
- Transitions separated by 11
- Fields within transition separated by 1

11101010000100100110100100000101011 11 11 111

21

11101010000100100110100100000101011 11 11 111

-
- Begins, ends with 111
- Transitions separated by 11
- Fields within transition separated by 1
- Individual fields represented by 0s

21

• Every TM is encoded by a unique element of ℕ

TMs are (binary) numbers

- Every TM is encoded by a unique element of ℕ
- Convention: elements of $\mathbb N$ that do not correspond to any TM encoding represent the "null TM" that accepts nothing.

TMs are (binary) numbers

- Every TM is encoded by a unique element of ℕ
- Convention: elements of $\mathbb N$ that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa

TMs are (binary) numbers
- Every TM is encoded by a unique element of ℕ
- Convention: elements of $\mathbb N$ that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let $\langle M \rangle$ mean the number that encodes M

TMs are (binary) numbers

- Every TM is encoded by a unique element of ℕ
- Convention: elements of $\mathbb N$ that do not correspond to any TM encoding represent the "null TM" that accepts nothing.
- Thus, every TM is a number, and vice versa
- Let $\langle M \rangle$ mean the number that encodes M
- Conversely, let M_n be the TM with encoding n .

TMs are (binary) numbers

How *M* **works** *^u* **Configuration**

• Tape 1: holds input *M* and *w* demarcated with #; never changes

• Tape 1: holds input *M* and *w* demarcated with #; never changes

- Tape 1: holds input *M* and *w* demarcated with #; never changes
- Tape 2: simulates *M*'s single tape

- Tape 1: holds input *M* and *w* demarcated with #; never changes
- Tape 2: simulates *M*'s single tape
- Tape 3: holds *M*'s current state

$$
\begin{array}{|c|c|c|c|}\n\hline\n1 & 1 & 1 & 1 & 1 & 1 \\
\hline\n1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline\n\end{array}
$$

• Check if Tape 1 holds a valid TM by examining < *M* >

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.
	- The beginning and ending must be enclosed in 111 's.

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.
- prevents two different e stote stevente two defference mural. om tre surget
	- The beginning and ending must be enclosed in 111's. • Substring 110^i | 0^j 1 does not appear twice.

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.
	- The beginning and ending must be enclosed in 111's.
	- Substring 110^i | 0^j 1 does not appear twice.
	- Appropriate number of zeros and ones between 1's demarcating transition code

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.
	- The beginning and ending must be enclosed in 111's.
	- Substring 110^i | 0^j 1 does not appear twice.
	- Appropriate number of zeros and ones between 1's demarcating transition code

 ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

11000010100000100001...

- Check if Tape 1 holds a valid TM by examining < *M* >
	- There should be no more than three consecutive ones.
	- The beginning and ending must be enclosed in 111 's.
	- Substring 110^i | 0^j 1 does not appear twice.
	- code

1100001010000

• Appropriate number of zeros and ones between 1's demarcating transition $1's$ demarcating transition > Not part of tay O alphabet

• Etc.

11101010000100100110100100000101011 111 # 100110 Tape 1

Code for *M*

11101010000100100110100100000101011 111 # 100110 | Tape 1

• Copy *w* to Tape 2

Code for *M*

Current contents of *M*'s tape

• Copy *w* to Tape 2

- Copy *w* to Tape 2
- Write 0 on Tape 3 indicating it is in the start state

Code for *M*

Current contents of *M*'s tape

- Copy *w* to Tape 2
- Write 0 on Tape 3 indicating it is in the start state

Code for *M*

Current contents of *M*'s tape

Current state of *M*

Code for *M*

Current contents of *M*'s tape

Current state of *M*

- Copy *w* to Tape 2
- Write 0 on Tape 3 indicating it is in the start state
- If at any time, Tape 3 holds 00 (or 000), then halt and accept (or reject)

• Repeatedly simulate the steps of *M*

Universal Turing Machine How *M* **works - Phase 3 (simulation)** *^u*

Current contents of *M*'s tape

\$0

Current state of *M*

 ϵ state $> 1 <$ input $> 1 <$ new state $> 1 <$ new-symbol $> 1 <$ direction $>$

Code for *M*

00110

- Repeatedly simulate the steps of *M*
- on tape 1. 110*ⁱ* 1001

Universal Turing Machine How *M* **works - Phase 3 (simulation)** *^u*

Current contents of *M*'s tape

\$0

Current state of *M*

 ϵ state $> 1 <$ input $> 1 <$ new state $> 1 <$ new-symbol $> 1 <$ direction $>$

• Example: If tape 3 holds 0^i and tape 2 is scanning 1, then search for substring

- Repeatedly simulate the steps of *M*
- on tape 1. 110*ⁱ* 1001

Universal Turing Machine How *M* **works - Phase 3 (simulation)** *^u*

Current contents of *M*'s tape

\$0

Current state of *M*

 ϵ state $> 1 <$ input $> 1 <$ new state $> 1 <$ new-symbol $> 1 <$ direction $>$

• Example: If tape 3 holds 0^i and tape 2 is scanning 1, then search for substring

- Repeatedly simulate the steps of *M*
- on tape 1. 110*ⁱ* 1001

if $i = 1$

Universal Turing Machine How *M* **works - Phase 3 (simulation)** *^u*

\$100110

Current contents of *M*'s tape

\$0

Current state of *M*

 ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

• Example: If tape 3 holds 0^i and tape 2 is scanning 1, then search for substring

- Repeatedly simulate the steps of *M*
- on tape 1. 110*ⁱ* 1001

if $i=1$

Universal Turing Machine How *M* **works - Phase 3 (simulation)** *^u*

\$100110

Tape 3

Current contents of *M*'s tape

\$0

Current state of *M*

 ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

11101010000100100110100100000101011 111 # 100110

Code for *M*

Code for *M*

\$000110

Current contents of *M*'s tape

 ϵ < state > 1 < input > 1 < new state > 1 < new-symbol > 1 < direction >

\$000110

Current contents of *M*'s tape

\$000110

Current contents of *M*'s tape

Current state of *M*

• Check if 00 or 000 is on tape 3; if so, halt and accept or reject

000110

Universal Turing Machine How *M* **works - Phase 3 - (simulation, after a single move)** *^u*

Current contents of *M*'s tape

Current state of *M*

- Check if 00 or 000 is on tape 3; if so, halt and accept or reject
- Otherwise, simulate the next move by searching for pattern. In this example, the next pattern $= 1100000101$

\$000110

Current contents of *M*'s tape

Current state of *M*

- Check if 00 or 000 is on tape 3; if so, halt and accept or reject
- Otherwise, simulate the next move by searching for pattern. In this example, the next pattern $= 1100000101$

\$000110

Current contents of *M*'s tape

Current state of *M*

Keeps repeating …

Examples

https://rosettacode.org/wiki/Universal_Turing_machine#Python https://pastebin.com/raw/JqZGrddK