

Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of
adding two numbers. What language class does it belong to?

ECE-374-B: Lecture 9 - Recursion, Sorting and Recurrences

Lecturor: Nickvash Kani

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of
adding two numbers. What language class does it belong to?

Pre-lecture brain teaser

Let's say we are adding two unary numbers.

3+4=7—=11T+111 = 111111 (1)

Seems like we can make a PDA that considers

T,e =1 T,e =1 1,1T—¢

g,e—9 +,e >« =,e—¢ e,$—e
start —»(dn > 2 >(43 > @

Pre-lecture brain teaser

What if we wanted add two binary numbers?

3+4=7—=114100=1 (2)

At least context-sensitive b/c we can build a finite Turing machine which takes in
the encoding

11111 +1 1710101 =117111711]<

Pre-lecture brain teaser

What if we wanted add two binary numbers?

34+4=7—1+100=111 (3)

Computes value on left hand side

11111+ 111171171=11117111]<

Pre-lecture brain teaser

What if we wanted add two binary numbers?

34+4=7—1+100=111 (4)

And compares it to the value on the right..

11111+ 111171171=11117111]<

New Course Section: Introductory
algorithms

Brief intro to the RAM model

Algorithms and Computing

- Algorithm solves a specific problem.

- Steps/instructions of an algorithm are simple/primitive and can be executed
mechanically.

- Algorithm has a finite description; same description for all instances of the
problem

- Algorithm implicitly may have state/memory
A computer is a device that

- implements the primitive instructions

- allows for an automated implementation of the entire algorithm by keeping
track of state

Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes
the primitive instructions and other details

- Computer: an actual physical device that implements a very specific model of
computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?

Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes
the primitive instructions and other details

- Computer: an actual physical device that implements a very specific model of
computation

In this course: design algorithms in a high-level model of computation.
Question: What model of computation will we use to design algorithms?

The standard programming model that you are used to in programming
languages such as Java/C++. We have already seen the Turing Machine model.

Unit-Cost RAM Model

Informal description:

- Basic data type is an integer number

- Numbers in input fit in a word

- Arithmetic/comparison operations on words take constant time
- Arrays allow random access (constant time to access A[i])

- Pointer based data structures via storing addresses in a word

Sorting: input is an array of n numbers

- input size is n (ignore the bits in each number),

- comparing two numbers takes O(1) time,

- random access to array elements,

- addition of indices takes constant time,

- basic arithmetic operations take constant time,

- reading/writing one word from/to memory takes constant time.

We will usually do not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- floor function.

- limit word size (usually assume unbounded word size).
10

What is an algorithmic problem?

What is an algorithmic problem?

An algorithmic problem is simply to compute a function f : X* — X* over strings
of a finite alphabet.

Algorithm A solves f if for all input strings w, A outputs f(w).

i

Types of Problems

We will broadly see three types of problems.

- Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from sto t in G?
Example: Given a CFG grammar G and string w, is w € L(G)?
- Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.
- Optimization Problem: Find a best solution among all solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

12

Analysis of Algorithms

Given a problem P and an algorithm A for P we want to know:

- Does A correctly solve problem P?
- What is the asymptotic worst-case running time of A?
- What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in O(f(n)) time if:
“for all n and for all inputs | of size n, A on input | terminates after O(f(n))

primitive steps.”

13

Algorithmic Techniques

- Reduction to known problem/algorithm

- Recursion, divide-and-conquer, dynamic programming
- Graph algorithms to use as basic reductions

- Greedy

Some advanced techniques not covered in this class:

- Combinatorial optimization

- Linear and Convex Programming, more generally continuous optimization
method

- Advanced data structure

- Randomization

- Many specialized areas

Reductions: Reducing problem A to
problem B:

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

15

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

DistinctElements(A[1..n])
for i=1 to n—1 do
for j=i+1 to n do
if (Al =A[])
return YES
return NO

15

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

DistinctElements(A[1..n])
for i=1 to n—1 do
for j=i+1 to n do
if (Al =A[])
return YES

return NO

Running time:

15

UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

DistinctElements(A[1..n])
for i=1 to n—1 do
for j=i+1 to n do
if (Al =A[])
return YES

return NO

Running time: O(n?)

15

Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i=1 to n—1 do
if (Al]=A[i+1]) then
return YES
return NO

Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i=1 to n—1 do
if (Al]=A[i+1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i=1 to n—1 do
if (Al]=A[i+1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers
Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also
consider hashing but outside scope of current course.

Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A

- Negative direction: Suppose there is no “efficient” algorithm for A then it
implies no efficient algorithm for B (technical condition for reduction time
necessary for this)

Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A

- Negative direction: Suppose there is no “efficient” algorithm for A then it
implies no efficient algorithm for B (technical condition for reduction time
necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

- An O(nlogn) time algorithm for Sorting implies an O(n log n) time algorithm
for Distinct Elements problem.

- If there is no o(nlog n) time algorithm for Distinct Elements problem then
there is no o(nlogn) time algorithm for Sorting.

Recursion as self reductions

Recursion

Reduction: reduce one problem to another
Recursion: a special case of reduction

- reduce problem to a smaller instance of itself

- self-reduction

Recursion

Reduction: reduce one problem to another
Recursion: a special case of reduction

- reduce problem to a smaller instance of itself

- self-reduction

+ Problem instance of size n is reduced to one or more instances of size n — 1
or less.

- For termination, problem instances of small size are solved by some other
method as base cases

Recursion

- Recursion is a very powerful and fundamental technique
- Basis for several other methods

- Divide and conquer

- Dynamic programming

- Enumeration and branch and bound etc

- Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)

- Recurrences arise in analysis

\ 4

=N
=

The Tower of Hanoi puzzle

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take? 20

Tower of Hanoi via Recursion

=
o

The Tower of Hanoi algorithm; ignore everything but the bottom disk

£
7
=

21

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n —1, tmp, dest, src)

22

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n —1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

22

Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n —1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n)=2T(n—1)+1 n>1 and T(1) =1

22

T(n) = 2T(n—=1)+1
= 2’T(n—=2)+2+1

= 2T(n =N +27" 4272+ . 41
= 2T 42" 2 4 1

= 2"y 41
= 2"-1)/(2-1)=2"—1

23

Merge Sort

Input Given an array of n elements

Goal Rearrange them in ascending order

2%

MergeSort

1. Input: Array A[1...n]
ALGORITHMS

25

MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and A[m +1...n], where m = |n/2]

ALGOR I THMS

25

MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and A[m +1...n], where m = |n/2]
ALGOR ITHMS
3. Recursively MergeSort A[1...m] and Ai[m +1...n]

AGLOR HIMST

25

MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and Ai[m +1...n], where m = |n/2|
ALGOR ITHMS

3. Recursively MergeSort A[1...m] and Ai[m +1...n]
AGLOR HIMST

4. Merge the sorted arrays
AGHILMORST

25

MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and Ai[m +1...n], where m = |n/2|
ALGOR ITHMS

3. Recursively MergeSort A[1...m] and Ai[m +1...n]
AGLOR HIMST

4. Merge the sorted arrays
AGHILMORST

25

Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
A

26

Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AG

26

Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGH

26

Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHI

26

Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

26

Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

- Merge two arrays using only constantly more extra space (in-place merge
sort): doable but complicated and typically impractical.

26

MERGESORT(A[1..n]):
ifn>1
m e« |[n/2]
MERGESORT(A[1..m])
MERGESORT(A[m + 1..n])
MERGE(A[1..n],m)

MERGE(A[1..n],m):
i1 jem+1
fork«—1ton

ifj>n
Blk] < Alil;
elseifi >m
Blk] < A[j];
else if A[i] < A[j]
Blk] < A[i];
else
Blk] < A[j];

fork«—1ton
Alk] < B[k]

i—i+1
je—j+1
ie—i+1

je—j+1

Formal Code

27

Running time analysis of merge-sort:
Recursion tree method

MergeSort(A[1..16])

Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])

28

MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])

28

Recursion tree

MergeSort(A[1..16])
MergeSort(A[1..8]) MergeSort(A[9..16])

28

Recursion tree

28

Recursion tree: subproblem sizes
MergeSort(A[1..16])

Recursion tree: subproblem sizes

MergeSort(A[1..16])
MergeSort(A[1..8]) MergeSort(A[9..16])

2

29

Recursion tree: subproblem sizes
MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])

29

Recursion tree: subproblem sizes

29

Recursion tree: subproblem sizes

29

Recursion tree: Total work?

30

T(n): time for merge sort to sort an n element array

31

T(n): time for merge sort to sort an n element array

T(n)=T(|n/2])+T([n/2])+cn

31

T(n): time for merge sort to sort an n element array

T(n)=T(|n/2])+T([n/2])+cn
What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know f(n)
such that T(n) = ©(f(n)).

- T(n) = O(f(n)) - upper bound
- T(n) = Q(f(n)) - lower bound

31

Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials,
elementary calculus

- Expand the recurrence and spot a pattern and use simple math

- Recursion tree method — imagine the computation as a tree

- Guess and verify — useful for proving upper and lower bounds even if not
tight bounds

32

Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials,
elementary calculus

- Expand the recurrence and spot a pattern and use simple math

- Recursion tree method — imagine the computation as a tree

- Guess and verify — useful for proving upper and lower bounds even if not
tight bounds

Albert Einstein: “Everything should be made as simple as possible, but not

simpler”

Know where to be loose in analysis and where to be tight. Comes with practice,
practice, practice!

32

Recursion Trees : MergeSort: n is a power of 2

- Unroll the recurrence. T(n) = 2T(n/2) 4 cn

33

Recursion Trees : MergeSort: n is a power of 2

2 /9 @) @)| . Unroll the recurrence. T(n)=2T(n/2)+cn

- ldentify a pattern.

33

Recursion Trees : MergeSort: n is a power of 2

2 /9 @) @)| . Unroll the recurrence. T(n)=2T(n/2)+cn

- ldentify a pattern. At the iplevel total work is cn.

33

Recursion Trees : MergeSort: n is a power of 2

@ Z - Unroll the recurrence. T(n) = 2T(n/2) 4 cn
@ @ @ @ - ldentify a pattern. At the iplevel total work is cn.

- Sum over all levels.

33

Recursion Trees : MergeSort: n is a power of 2

@ Z - Unroll the recurrence. T(n) = 2T(n/2) 4 cn
@ @ @ @ - ldentify a pattern. At the iplevel total work is cn.

- Sum over all levels. The number of levels is
log n. So total is cnlogn = O(nlogn).

33

Recursion Trees

34

Recursion Trees

Work in each node

34

Recursion Trees

Joll
2 2
! 7 \

Work in each node

34

Recursion Trees

cn = Cn

a 4+ @ =cn

logn @y @y ey @
= cn

34

Recursion Trees

cn = Cn
CI +
% + 5 = Cn
CcNn Ccn cn cn +
log n 2+ T+ T+ 1T = cn
—=cn

34

Merge Sort Variant

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better
by splitting into more than 2 arrays? Say k arrays of size n/k each?

35

Binary Search

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal IsxinA?

36

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?
BinarySearch (A[a..b], x):
if (b—a<0) returnNO
mid = A[[(a + b)/2]]
if (x=mid) return YES
if (x<mid)
return BinarySearch (Afa..[(a+b)/2] —1], x)

else
return BinarySearch (A[|(a+ b)/2]| +1..b],x)

36

Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?
BinarySearch (A[a..b], x):
if (b—a<0) returnNO
mid = A[[(a + b)/2]]
if (x=mid) return YES
if (x<mid)
return BinarySearch (Afa..[(a+b)/2] —1], x)

else
return BinarySearch (A[|(a+ b)/2]| +1..b],x)

Analysis: T(n) =T(|n/2]) + O(1). T(n) = O(logn).
Observation: After k steps, size of array left is n/2*?
36

	New Course Section: Introductory algorithms
	Brief intro to the RAM model
	What is an algorithmic problem?
	Reductions: Reducing problem A to problem B:
	Recursion as self reductions
	Merge Sort
	Running time analysis of merge-sort: Recursion tree method
	Solving Recurrences

	Binary Search

