


Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of
adding two numbers. What language class does it belong to?
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Pre-lecture brain teaser

Let's say we are adding two unary numbers.

3+4=7—=11T+111 = 111111 (1)

Seems like we can make a PDA that considers

T,e =1 T,e =1 1,1T—¢
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Pre-lecture brain teaser

What if we wanted add two binary numbers?

3+4=7—=114100=1 (2)

At least context-sensitive b/c we can build a finite Turing machine which takes in
the encoding

11111 +1 1710101 =117111711]<




Pre-lecture brain teaser

What if we wanted add two binary numbers?

34+4=7—1+100=111 (3)

Computes value on left hand side

11111+ 111171171=11117111]<




Pre-lecture brain teaser

What if we wanted add two binary numbers?

34+4=7—1+100=111 (4)

And compares it to the value on the right..

11111+ 111171171=11117111]<




New Course Section: Introductory
algorithms



Brief intro to the RAM model




Algorithms and Computing

- Algorithm solves a specific problem.

- Steps/instructions of an algorithm are simple/primitive and can be executed
mechanically.

- Algorithm has a finite description; same description for all instances of the
problem

- Algorithm implicitly may have state/memory
A computer is a device that

- implements the primitive instructions

- allows for an automated implementation of the entire algorithm by keeping
track of state



Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes
the primitive instructions and other details

- Computer: an actual physical device that implements a very specific model of
computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?



Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes
the primitive instructions and other details

- Computer: an actual physical device that implements a very specific model of
computation

In this course: design algorithms in a high-level model of computation.
Question: What model of computation will we use to design algorithms?

The standard programming model that you are used to in programming
languages such as Java/C++. We have already seen the Turing Machine model.



Unit-Cost RAM Model

Informal description:

- Basic data type is an integer number

- Numbers in input fit in a word

- Arithmetic/comparison operations on words take constant time
- Arrays allow random access (constant time to access A[i])

- Pointer based data structures via storing addresses in a word



Sorting: input is an array of n numbers

- input size is n (ignore the bits in each number),

- comparing two numbers takes O(1) time,

- random access to array elements,

- addition of indices takes constant time,

- basic arithmetic operations take constant time,

- reading/writing one word from/to memory takes constant time.

We will usually do not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- floor function.

- limit word size (usually assume unbounded word size).
10



What is an algorithmic problem?



What is an algorithmic problem?

An algorithmic problem is simply to compute a function f : X* — X* over strings
of a finite alphabet.

Algorithm A solves f if for all input strings w, A outputs f(w).

i



Types of Problems

We will broadly see three types of problems.

- Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from sto t in G?
Example: Given a CFG grammar G and string w, is w € L(G)?
- Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.
- Optimization Problem: Find a best solution among all solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

12



Analysis of Algorithms

Given a problem P and an algorithm A for P we want to know:

- Does A correctly solve problem P?
- What is the asymptotic worst-case running time of A?
- What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in O(f(n)) time if:
“for all n and for all inputs | of size n, A on input | terminates after O(f(n))

primitive steps.”

13



Algorithmic Techniques

- Reduction to known problem/algorithm

- Recursion, divide-and-conquer, dynamic programming
- Graph algorithms to use as basic reductions

- Greedy

Some advanced techniques not covered in this class:

- Combinatorial optimization

- Linear and Convex Programming, more generally continuous optimization
method

- Advanced data structure

- Randomization

- Many specialized areas



Reductions: Reducing problem A to
problem B:




UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

15



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

DistinctElements(A[1..n])
for i=1 to n—1 do
for j=i+1 to n do
if (Al =A[])
return YES
return NO
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UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

DistinctElements(A[1..n])
for i=1 to n—1 do
for j=i+1 to n do
if (Al =A[])
return YES

return NO

Running time: O(n?)

15



Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i=1 to n—1 do
if (Al]=A[i+1]) then
return YES
return NO




Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i=1 to n—1 do
if (Al]=A[i+1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box



Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i=1 to n—1 do
if (Al]=A[i+1]) then
return YES
return NO

Running time: O(n) plus time to sort an array of n numbers
Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also
consider hashing but outside scope of current course.



Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A

- Negative direction: Suppose there is no “efficient” algorithm for A then it
implies no efficient algorithm for B (technical condition for reduction time
necessary for this)



Two sides of Reductions

Suppose problem A reduces to problem B

- Positive direction: Algorithm for B implies an algorithm for A

- Negative direction: Suppose there is no “efficient” algorithm for A then it
implies no efficient algorithm for B (technical condition for reduction time
necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

- An O(nlogn) time algorithm for Sorting implies an O(n log n) time algorithm
for Distinct Elements problem.

- If there is no o(nlog n) time algorithm for Distinct Elements problem then
there is no o(nlogn) time algorithm for Sorting.



Recursion as self reductions




Recursion

Reduction: reduce one problem to another
Recursion: a special case of reduction

- reduce problem to a smaller instance of itself

- self-reduction



Recursion

Reduction: reduce one problem to another
Recursion: a special case of reduction

- reduce problem to a smaller instance of itself

- self-reduction

+ Problem instance of size n is reduced to one or more instances of size n — 1
or less.

- For termination, problem instances of small size are solved by some other
method as base cases



Recursion

- Recursion is a very powerful and fundamental technique
- Basis for several other methods

- Divide and conquer

- Dynamic programming

- Enumeration and branch and bound etc

- Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)

- Recurrences arise in analysis
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The Tower of Hanoi puzzle

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take? 20



Tower of Hanoi via Recursion

=
o

The Tower of Hanoi algorithm; ignore everything but the bottom disk

£
7
=
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n —1, tmp, dest, src)

22



Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n —1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

22



Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n>0) then
Hanoi(n —1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n —1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n)=2T(n—1)+1 n>1 and T(1) =1

22



T(n) = 2T(n—=1)+1
= 2’T(n—=2)+2+1

= 2T(n =N +27" 4272+ . 41
= 2T 42" 2 4 1

= 2"y 41
= 2"-1)/(2-1)=2"—1
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Merge Sort




Input Given an array of n elements

Goal Rearrange them in ascending order

2%



MergeSort

1. Input: Array A[1...n]
ALGORITHMS

25



MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and A[m +1...n], where m = |n/2]

ALGOR I THMS
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MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and A[m +1...n], where m = |n/2]
ALGOR ITHMS
3. Recursively MergeSort A[1...m] and Ai[m +1...n]

AGLOR HIMST
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2. Divide into subarrays A[1...m] and Ai[m +1...n], where m = |n/2|
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MergeSort

1. Input: Array A[1...n]
ALGORITHMS

2. Divide into subarrays A[1...m] and Ai[m +1...n], where m = |n/2|
ALGOR ITHMS

3. Recursively MergeSort A[1...m] and Ai[m +1...n]
AGLOR HIMST

4. Merge the sorted arrays
AGHILMORST

25



Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
A

26



Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AG
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Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGH
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Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHI
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Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST
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Merging Sorted Arrays

- Use a new array C to store the merged array

- Scan A and B from left-to-right, storing elements in C in order

AGLOR HIMST
AGHILMORST

- Merge two arrays using only constantly more extra space (in-place merge
sort): doable but complicated and typically impractical.

26



MERGESORT(A[1..n]):
ifn>1
m e« |[n/2]
MERGESORT(A[1..m])
MERGESORT(A[m + 1..n])
MERGE(A[1..n],m)

MERGE(A[1..n],m):
i1 jem+1
fork«—1ton

ifj>n
Blk] < Alil;
elseifi >m
Blk] < A[j];
else if A[i] < A[j]
Blk] < A[i];
else
Blk] < A[j];

fork«—1ton
Alk] < B[k]

i—i+1
je—j+1
ie—i+1

je—j+1

Formal Code

27



Running time analysis of merge-sort:
Recursion tree method




MergeSort(A[1..16])



Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])
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MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])
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Recursion tree

MergeSort(A[1..16])
MergeSort(A[1..8]) MergeSort(A[9..16])
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Recursion tree

28



Recursion tree: subproblem sizes
MergeSort(A[1..16])



Recursion tree: subproblem sizes

MergeSort(A[1..16])
MergeSort(A[1..8]) MergeSort(A[9..16])

2
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Recursion tree: subproblem sizes
MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])
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Recursion tree: subproblem sizes

29



Recursion tree: subproblem sizes
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Recursion tree: Total work?

30



T(n): time for merge sort to sort an n element array

31



T(n): time for merge sort to sort an n element array

T(n)=T(|n/2])+T([n/2])+cn

31



T(n): time for merge sort to sort an n element array

T(n)=T(|n/2])+T([n/2])+cn
What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know f(n)
such that T(n) = ©(f(n)).

- T(n) = O(f(n)) - upper bound
- T(n) = Q(f(n)) - lower bound

31



Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials,
elementary calculus

- Expand the recurrence and spot a pattern and use simple math

- Recursion tree method — imagine the computation as a tree

- Guess and verify — useful for proving upper and lower bounds even if not
tight bounds

32



Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials,
elementary calculus

- Expand the recurrence and spot a pattern and use simple math

- Recursion tree method — imagine the computation as a tree

- Guess and verify — useful for proving upper and lower bounds even if not
tight bounds

Albert Einstein: “Everything should be made as simple as possible, but not

simpler”

Know where to be loose in analysis and where to be tight. Comes with practice,
practice, practice!
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Recursion Trees : MergeSort: n is a power of 2

- Unroll the recurrence. T(n) = 2T(n/2) 4 cn

33



Recursion Trees : MergeSort: n is a power of 2

2 /9 @) @)| . Unroll the recurrence. T(n)=2T(n/2)+cn

- ldentify a pattern.
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Recursion Trees : MergeSort: n is a power of 2

2 /9 @) @)| . Unroll the recurrence. T(n)=2T(n/2)+cn

- ldentify a pattern. At the iplevel total work is cn.
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Recursion Trees : MergeSort: n is a power of 2

@ Z - Unroll the recurrence. T(n) = 2T(n/2) 4 cn
@ @ @ @ - ldentify a pattern. At the iplevel total work is cn.

- Sum over all levels.
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Recursion Trees : MergeSort: n is a power of 2

@ Z - Unroll the recurrence. T(n) = 2T(n/2) 4 cn
@ @ @ @ - ldentify a pattern. At the iplevel total work is cn.

- Sum over all levels. The number of levels is
log n. So total is cnlogn = O(nlogn).
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Recursion Trees

34



Recursion Trees

Work in each node

34



Recursion Trees

Joll
2 2
! 7 \

Work in each node
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Recursion Trees

cn = Cn

a 4+ @ =cn

logn @y @y ey @
= cn
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Recursion Trees

cn = Cn
CI +
% + 5 = Cn
CcNn Ccn cn cn +
log n 2+ T+ T+ 1T = cn
—=cn

34



Merge Sort Variant

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better
by splitting into more than 2 arrays? Say k arrays of size n/k each?

35



Binary Search




Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal IsxinA?

36



Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?
BinarySearch (A[a..b], x):
if (b—a<0) returnNO
mid = A[[(a + b)/2]]
if (x=mid) return YES
if (x<mid)
return BinarySearch (Afa..[(a+b)/2] —1], x)

else
return BinarySearch (A[|(a+ b)/2]| +1..b],x)
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?
BinarySearch (A[a..b], x):
if (b—a<0) returnNO
mid = A[[(a + b)/2]]
if (x=mid) return YES
if (x<mid)
return BinarySearch (Afa..[(a+b)/2] —1], x)

else
return BinarySearch (A[|(a+ b)/2]| +1..b],x)

Analysis: T(n) =T(|n/2]) + O(1). T(n) = O(logn).
Observation: After k steps, size of array left is n/2*?
36
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