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Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of
adding two numbers. What language class does it belong to?
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Pre-lecture brain teaser

Let’s say we are adding two unary numbers.

3+ 4 = 7→ 111+ 1111 = 1111111 (1)

Seems like we can make a PDA that considers

q1start q2 q3 q4 q5
ε, ε → $ +, ε → ε =, ε → ε ε, $ → ε

1, ε → 1 1, ε → 1 1, 1→ ε
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Pre-lecture brain teaser

What if we wanted add two binary numbers?

3+ 4 = 7→ 11+ 100 = 111 (2)

At least context-sensitive b/c we can build a finite Turing machine which takes in
the encoding

B 1 1 + 1 0 0 = 1 1 1 C

q1
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Pre-lecture brain teaser

What if we wanted add two binary numbers?

3+ 4 = 7→ 11+ 100 = 111 (3)

Computes value on left hand side

B 1 1 + 1 1 1 = 1 1 1 C

q1
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Pre-lecture brain teaser

What if we wanted add two binary numbers?

3+ 4 = 7→ 11+ 100 = 111 (4)

And compares it to the value on the right..

B 1 1 + 1 1 1 = 1 1 1 C

q1
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New Course Section: Introductory
algorithms



Brief intro to the RAM model



Algorithms and Computing

• Algorithm solves a specific problem.
• Steps/instructions of an algorithm are simple/primitive and can be executed
mechanically.

• Algorithm has a finite description; same description for all instances of the
problem

• Algorithm implicitly may have state/memory

A computer is a device that

• implements the primitive instructions
• allows for an automated implementation of the entire algorithm by keeping
track of state
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Models of Computation vs Computers

• Model of Computation: an idealized mathematical construct that describes
the primitive instructions and other details

• Computer: an actual physical device that implements a very specific model of
computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?

The standard programming model that you are used to in programming
languages such as Java/C++. We have already seen the Turing Machine model.
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Unit-Cost RAM Model

Informal description:

• Basic data type is an integer number
• Numbers in input fit in a word
• Arithmetic/comparison operations on words take constant time
• Arrays allow random access (constant time to access A[i])
• Pointer based data structures via storing addresses in a word
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Example

Sorting: input is an array of n numbers

• input size is n (ignore the bits in each number),
• comparing two numbers takes O(1) time,
• random access to array elements,
• addition of indices takes constant time,
• basic arithmetic operations take constant time,
• reading/writing one word from/to memory takes constant time.

We will usually do not allow (or be careful about allowing):

• bitwise operations (and, or, xor, shift, etc).
• floor function.
• limit word size (usually assume unbounded word size).
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What is an algorithmic problem?



What is an algorithmic problem?

An algorithmic problem is simply to compute a function f : Σ∗ → Σ∗ over strings
of a finite alphabet.

Algorithm A solves f if for all input strings w, A outputs f (w).
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Types of Problems

We will broadly see three types of problems.

• Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to t in G?
Example: Given a CFG grammar G and string w, is w ∈ L(G)?

• Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.

• Optimization Problem: Find a best solution among all solutions for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.
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Analysis of Algorithms

Given a problem P and an algorithm A for P we want to know:

• Does A correctly solve problem P?
• What is the asymptotic worst-case running time of A?
• What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in O(f (n)) time if:

“for all n and for all inputs I of size n, A on input I terminates after O(f (n))
primitive steps.”

13



Algorithmic Techniques

• Reduction to known problem/algorithm
• Recursion, divide-and-conquer, dynamic programming
• Graph algorithms to use as basic reductions
• Greedy

Some advanced techniques not covered in this class:

• Combinatorial optimization
• Linear and Convex Programming, more generally continuous optimization
method

• Advanced data structure
• Randomization
• Many specialized areas
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Reductions: Reducing problem A to
problem B:



UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:
DistinctElements(A[1..n])

for i = 1 to n− 1 do
for j = i+ 1 to n do

if (A[i] = A[j])
return YES

return NO

Running time: O(n2)
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Reduction to Sorting

DistinctElements(A[1..n])
Sort A
for i = 1 to n− 1 do

if (A[i] = A[i+ 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also
consider hashing but outside scope of current course.
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Two sides of Reductions

Suppose problem A reduces to problem B

• Positive direction: Algorithm for B implies an algorithm for A
• Negative direction: Suppose there is no “efficient” algorithm for A then it
implies no efficient algorithm for B (technical condition for reduction time
necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time

• An O(n log n) time algorithm for Sorting implies an O(n log n) time algorithm
for Distinct Elements problem.

• If there is no o(n log n) time algorithm for Distinct Elements problem then
there is no o(n log n) time algorithm for Sorting.
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Recursion as self reductions



Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

• reduce problem to a smaller instance of itself
• self-reduction

• Problem instance of size n is reduced to one or more instances of size n− 1
or less.

• For termination, problem instances of small size are solved by some other
method as base cases
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Recursion

• Recursion is a very powerful and fundamental technique
• Basis for several other methods

• Divide and conquer
• Dynamic programming
• Enumeration and branch and bound etc
• Some classes of greedy algorithms

• Makes proof of correctness easy (via induction)
• Recurrences arise in analysis
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Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take? 20



Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3
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Recursive Algorithm

Hanoi(n, src, dest, tmp):
if (n > 0) then

Hanoi(n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n− 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n) = 2T(n− 1) + 1 n > 1 and T(1) = 1
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Analysis

T(n) = 2T(n− 1) + 1
= 22T(n− 2) + 2+ 1
= . . .

= 2iT(n− i) + 2i−1 + 2i−2 + . . .+ 1
= . . .

= 2n−1T(1) + 2n−2 + . . .+ 1
= 2n−1 + 2n−2 + . . .+ 1
= (2n − 1)/(2− 1) = 2n − 1
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Merge Sort



Sorting

Input Given an array of n elements
Goal Rearrange them in ascending order
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MergeSort

1. Input: Array A[1 . . .n]
A L G O R I T H M S
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MergeSort

1. Input: Array A[1 . . .n]
A L G O R I T H M S

2. Divide into subarrays A[1 . . .m] and A[m+ 1 . . .n], where m = bn/2c

A L G O R I T H M S
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Merging Sorted Arrays

• Use a new array C to store the merged array
• Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A

G H I L M O R S T
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Merging Sorted Arrays

• Use a new array C to store the merged array
• Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
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Merging Sorted Arrays

• Use a new array C to store the merged array
• Scan A and B from left-to-right, storing elements in C in order
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Merging Sorted Arrays

• Use a new array C to store the merged array
• Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

• Merge two arrays using only constantly more extra space (in-place merge
sort): doable but complicated and typically impractical.
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Formal Code
Algorithms Lecture �: Recursion [Fa’��]

M����S���(A[1 .. n]):
if n> 1

m bn/2c
M����S���(A[1 .. m])
M����S���(A[m+ 1 .. n])
M����(A[1 .. n], m)

M����(A[1 .. n], m):
i 1; j m+ 1

for k 1 to n
if j > n

B[k] A[i]; i i + 1

else if i > m
B[k] A[ j]; j j + 1

else if A[i]< A[ j]
B[k] A[i]; i i + 1

else
B[k] A[ j]; j j + 1

for k 1 to n
A[k] B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
M���� subroutine then to the top-level M�������� algorithm.

• We prove M���� is correct by induction on n� k + 1, which is the total size of the two
sorted subarrays A[i .. m] and A[ j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

– If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

– If i  m and j > n, the subarray A[ j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k] A[i] is correct. The inductive hypothesis implies that the remaining subarrays
A[i + 1 .. m] and A[ j .. n] are correctly merged into B[k+ 1 .. n].

– Similarly, if i > m and j  n, the assignment B[k]  A[ j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the M���� algorithm correctly merges—the remaining subarrays A[i .. m] and
A[ j + 1 .. n] into B[k+ 1 .. n].

– If i  m and j  n and A[i]< A[ j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

– Finally, if i  m and j  n and A[i] � A[ j], then the smallest remaining element is
A[ j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

• Now we prove M����S��� correct by induction; there are two cases to consider. Yes, two.

– If n 1, the algorithm correctly does nothing.

– Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis
implies that our algorithm correctly sorts—the two smaller subarrays A[1 .. m] and
A[m+1 .. n], after which they are correctly M����d into a single sorted array (by the
previous argument).

What’s the running time? Because the M����S��� algorithm is recursive, its running
time will be expressed by a recurrence. M���� clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
M����S���:

T (n) = T
�
dn/2e
�
+ T
�
bn/2c
�
+O(n).

�
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Running time analysis of merge-sort:
Recursion tree method



Recursion tree

MergeSort(A[1..16])
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Recursion tree
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Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8]) MergeSort(A[9..16])
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Recursion tree: subproblem sizes

MergeSort(A[1..16]) 16
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Recursion tree: subproblem sizes
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Recursion tree: Total work?

16

8 8

4 4 4 4

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Running Time

T(n): time for merge sort to sort an n element array

T(n) = T(bn/2c) + T(dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know f (n)
such that T(n) = Θ(f (n)).

• T(n) = O(f (n)) - upper bound
• T(n) = Ω(f (n)) - lower bound
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Solving Recurrences: Some Techniques

• Know some basic math: geometric series, logarithms, exponentials,
elementary calculus

• Expand the recurrence and spot a pattern and use simple math
• Recursion tree method — imagine the computation as a tree
• Guess and verify — useful for proving upper and lower bounds even if not
tight bounds

Albert Einstein: “Everything should be made as simple as possible, but not
simpler.”

Know where to be loose in analysis and where to be tight. Comes with practice,
practice, practice!
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Recursion Trees : MergeSort: n is a power of 2

n

n/2 n/2

n/4 n/4 n/4 n/4

• Unroll the recurrence. T(n) = 2T(n/2) + cn
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n

n/2 n/2

n/4 n/4 n/4 n/4

• Unroll the recurrence. T(n) = 2T(n/2) + cn
• Identify a pattern. At the iþlevel total work is cn.
• Sum over all levels.

The number of levels is
log n. So total is cn log n = O(n log n).
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Recursion Trees
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Merge Sort Variant

Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better
by splitting into more than 2 arrays? Say k arrays of size n/k each?
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Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch (A[a..b], x):
if (b− a < 0) return NO
mid = A[b(a+ b)/2c]
if (x = mid) return YES
if (x < mid)

return BinarySearch (A[a..b(a+ b)/2c − 1], x)
else

return BinarySearch (A[b(a+ b)/2c+ 1..b],x)

Analysis: T(n) = T(bn/2c) + O(1). T(n) = O(log n).
Observation: After k steps, size of array left is n/2k
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