ECE 374 B Complete: Cheatsheet

1 Languages and strings

Languoges Wi

- An alphabet 3 is a finite set of symbols. + The length of a string w (denoted by |w|) is the number of sym-

m A string in ©* is a finite sequence of symbols in X. Pols in w.
+ Forinteger n > 0, X" is set of all strings over X of length n.

m ¥* is the set of all strings over 3.

All languages represent mathematical problems. - X isthe set of all strings of all lengths including empty string.
Example: multiplication of two integers:

- Alanguage is L is a set of strings over some alphabet.

+ elisastring containing no symbols.
1x 11, 1 x 22, 1x3|3,... + @ is the empty set. It contains no strings.

LyurnTe = . . . D + If z and y are strings then zy denotes their concatena-
. . . tion. Recursively:

n X 1lln, nx22n, nXx3|3n,... .

- zy=yifz=c¢e

- zy = a(wy) ifz = aw
+ For languages A, B the concatenation of A, B is AB =

{zy |z € A,y € B} + v is substring of w <= there exist strings z, y such
’ i that w = zvy. -
+ For languages A, B, their union is A U B, intersection is Strln_g
A N B, and difference is A \ B (also writtenas A — B). - Ifz = e then v is a prefix of w operations
b;:gl:;gnes - Forlanguage A C ©* the complement of Ais A = ©* \ A. - Ify = e then v is a suffix of w
+ X" is the set of all strings of length n. - A subsequence of a string w = wiws . . . wy, IS either
- B* = U,>oX™ is the set of all strings over . a subsequence of ws . . . w,, or w; followed by a sub-

sequence of wa . .. w,.
- 1 = U,>1 2" is the set of non-empty strings over .

+ Ifwisastring then w™ is defined inductively as follows:

w” =eifn=00rw”™ = ww™ ifn >0

2 Overview of language complexity

Overview

recursively enumerable

context-sensitive

context-free

Grammar | Languages Production Rules Automaton Examples
Type-0O recursively enumerable g\o_z:gnstraints) Turing machine L = {w|wisa TM which halts}

linear bounded

Type-1 context-sensitive aAB — ayf nondeterministic L ={a"b"c"|n > 0}
Turing machine
nondeterministic namn
pushdown automata L = {a™b%|n > 0}
Type-3 regular A — aB finite state machine L = {a"|n > 0}

Type-2 context-free A— «

Meaning of symbols:

- a - terminal

+ A, B - variables

+ a, B, -stringsin {a U A}* where a, 8 are maybe empty, ~ is never empty

9Table borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages
by applying

*+ union,

+ concatenation or

+ Kleene star

finitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet X is one of the following:
Base cases:

+ @ the language @
- e denotes the language {e}
- a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L, and L, respectively (ie.L(r1) = L1 and L(r2) = L») then,

+ r1 + rz denotes the language L1 U Lo
+ r1+rz denotes the language L1 Lo
- rj denotes the language L7

Examples:

+ 0™ - the set of all strings of 0s, including the empty string

+ (00000)* - set of all strings of 0s with length a multiple of 5
- (04 1)* - set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
definedas L(N) = {w | N accepts w}.

A nondeterministic finite automaton (NFA) N = (Q, X, s, A, §) is a five tuple
where

+ Qs afinite set whose elements are called states

- Y is afinite set called the input alphabet

- §: QxXU{e} — P(Q) isthetransition function (here P(Q) is the power
set of Q)

+ sand X are the same as in DFAs

Example:
© Q=1{q90,91,92,93}
- »={0,1}
| e o 1
o1 1 s qo ({q0}) qu% {qoélh}
start Z J L () Cq q1, q: q:
ROROSSCRS R {2 fag)
a3 {as} {as} {as}
* $=4qo
© A={g}

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L (M)
and defined as L(M) = {w | M accepts w}.

A deterministic finite automaton (DFA) M = (Q, %, s, A, d) is a five tuple
where

+ Qs afinite set whose elements are called states

- Y is afinite set called the input alphabet

- §:Q X X — Qisthe transition function

+ s € Qs the start state

+ A C Qs the set of accepting/final states

Example:
© Q={q0,q1}
1 1 - 2 ={0,1}
© 0o 1
start .@ T TR
q1 q0 q1
(0] S =4qo
© A={q}

Every string has a unique walk along a DFA. We define the extended transi-
tion functionas §* : @ x ¥* — @ defined inductively as follows:

- 8 (q,w) =qifw=c¢
+ 8"(q,w) =6"(6(q, a),x) ifw = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose
+ L(Mp) = {w has an even humber of 0s} (pictured above) and
+ L(M;) = {w has an even number of 1s}.

L(Mc) = {w has even number of 0s and 1s}
Suppose My = (Qo,%, s0, Ao, o) and
M1 = (Ql, Z, S1, Al, 51) Then

* Q=QoxQ1=1{(9,91) | 90 € Qo,q1 €
1
+ s = (s0,81)
©6:QxX = Q where §((q0,91),a) =
(60(q0, a), 61(q1,a))
+ A={(q0,q1) | g0 € Apand g1 € A}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

Thompson's algorithm:

regular
expressions.

®

Arden'srule: If R = Q + RP then R = QP~*.

\. J

For NFA N = (Q,%,d,s,A) and g € Q. the e-reach(q) is the set of all
states that ¢ can reach using only e-transitions.
Inductive definition of §* : Q x £* — P(Q):

- ifw=¢ 6"(q,w) = e-reach(q)

c ifw=aforaeX 6%(q,a)=ereach (Upes—reach(q) 4(p, a))

< if w = ax for a E 3,z E 2 6%(q,w) =

ereach (Upea-reach(q) (Ures* (pra) 07 (7 $)))

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Fooling sets

Some languages are not regular (Ex. L = {0™1" | n > 0}).

Two states p, ¢ € Q are distinguish-
able if there exists a string w € %,
such that Two states p, ¢ € Q are equivalent if
for all strings w € £*, we have that

8" (p,w) € Aand §* (q,w) ¢ A.
o 5" (p,w) € A <= 6§ (q,w) € A.

8" (p,w) & Aand 5" (q,w) € A.

For alanguage L over X a set of strings F (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings =, y € F are distinguish-
able.

\.

4 Context-free languages 5 Recursively enumerable languages

Context-free languages Turing Machines

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadruple G = (V, T, P, S)

bloflalalal-a - Input/Output Tape

Turing machine is the simplest model

of computation.
+ Vis afinite set of nonterminal (variable) symbols - Input written on (infinite) one sided s e
+ T is afinite set of terminal symbols (alphabet) tape.

- Pisafinite set of productions, each of the form A — « where A € V and : Sp?cial blank charac.ter.s.
aisastringin (V. UT)* Formally, P C V x (V UT)*. + Finite state control (similar to DFA).
+ Ever step: Read character under

> B & Vistiestatsyimoel head, write character out, move the

Example: L = {ww®|w € {0,1}*} is described by G = (V, T, P, S) head right or left (or stay). .
where V, T, P and S are defined as follows: - Every TM M can be encoded as a Fiite Control
-V ={S} string (M)

- T =1{0,1}

« P={S —¢]0S0]| 151}
(abbreviation for S — ¢, S — 050, S — 151)

Transition Function: 6 : Q@ X I' - Q X I' x {«+, —, 0}

- S=8
(g, c) = (p,d, <) c/d, L
+ @ current state.
PUShdown automata - ¢ character under tape head.
A pushdown automaton is an NFA with a stack. * pinew state.
. . + d. character to write under tape
The language L = {0™1™ | n > 0} is recognized by the pushdown au- head

tomaton: - < Move tape head left.

A nondeterministic pushdown automaton (PDA) P = (Q, X, T', §, s, A) is a six
tuple where

+ Qs afinite set whose elements are called states
- Y is afinite set called the input alphabet
- I'is afinite set called the stack alphabet

c0:Q x (2U{e}) x T U{e}) —» P(Q x (' U {e})) is the transition
function

+ sis the start state

- Ais the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
(input read), (stack pop) — (stack push).

A CFG <can be converted to a pushdown automaton.

start qs

e,e = $

GD
The PDA to the right recog-
nizes the language described

by the following grammar: g, e > S
S = 08|1je e, S 1 525
e, S —e
1,1 —
? € g, e = 0
e,%$—>e¢
@

Context-free closure

Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.

\. J

6 Recursion

Simple recursion

- Reduction: solve one problem using the solution to another.

+ Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

m - Problem instance of size n is reduced to one or more in-
stances of size n — 1 or less.

- For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the first peg to the last peg.

Hanoi (n, src, dest, tmp):
if (n > 0) then
Hanoi (n — 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n — 1, tmp, dest, src)

Tower
of Hanoi

\. J

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Algorithm Runtime Space
Sorting O(nlogn)
algo- Mergesort | O(nlogn) O(n) (if optimized)
rithms : O(n”)
CleEet: O(nlogn) if using MoM Gia)

We can divide and conquer multiplication like so:

n/2

bc=10nchL+10 (chR-‘rbRCL)-‘rbRCR.

We can rewrite the equation as:

Karatsuba's
be = b(z)e(z) = (brx + br)(cpx + cr) = (bper)z> algorithm

+ ((br +br)(cL + cr) —brcr — brer) @
+ brecr,

Its running time is O(n'°82 3) = O(n!-58%).

Recurrences

Suppose you have a recurrence of the form T'(n) = rT'(n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = xf(n) where k <1 T(n) = O(f(n))
Equal: rf(n/c) = f(n) T(n) = O(f(n) - log,n)
Increasing: rf(n/c) = K f(n) where K > 1 T(n) = O(n'°%")

Some useful identities:

: . _ wa
- Sum of integers: >-7_, k = %

1—pnt1
T=

- Geometric series closed-form formula: > 77— ar® =

+ Logarithmic identities: log(ab) = loga + logb,log(a/b) = loga —
log b, a'°%c® = pl°8c @ (q, b, ¢ > 1).

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in some multi-step process and recursing backwards if it doesn't
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

algLISNaive(A[l..n]):
maxmax = 0
for each subsequence B of A do
if B is increasing and | B| > max then
mazxz = |B|
return max

On the other hand, we dont need to generate every subsequence;
we only need to generate the subsequences that are increasing:

LIS_smaller(A[1..n], z):
if n = 0 then return 0
max = LIS_smaller(A[l..n — 1], z)
if A[n] < x then
max = max {max, 1 + LIS_smaller(A[l..(n — 1)], A[n])}
return max

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than
1%'5 and smaller than %'5 of the array elements. This is used in the linear
time selection algorithm to find element of rank k.

Median-of-medians (A4, i)
sublists = [Aljj+5] forj < 0,5, ..., len(A)]
medians = [sorted (sublist)llen (sublist)/2]
for sublist € sublists]

// Base case
if len (A) < 5 return sorted (a)lil

// Find median of medians
if len (medians) < 5

pivot = sorted (medians)ilen (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j € A if j < pivotl
high = [j for j € A'if j > pivotl

k = len (low)
ifi<k

return Median-of-medians (low, i)
elseifi>k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

ag;y; +O0pt(i—1,j—1),

0 ifi=0 Opt(?,7) = min § § + Opt(z — 1, j),
LIS(, /) LIS(i —1,7) if Afi] > A[j] 0 + Opt(s,j — 1)
Z’-] = . .
Lis(i - 1,5) else Base cases: Opt(i,0) = & - i and Opt(0,j) = 6 - j
14 LIS(¢ —1,4)

EDIST(A[l..m], B[1..n])
for i + 1tomdo M[i,0] = i

LIS-Iterative(A[l..n]): for j < 1tondo M(0,j] = j6

Aln+1] = o0
forj+ Oton

fori—1
if Alil < Aljl then LIS[0][f] = 1 ori = 1tom do

forj =1tondo
COST[Al] [BL1]
+MTi — 1[5 - 1],
5+ M[i - 1][j],
8+ MIil[j — 1]

fori<« 1ton —1do
forj < iton —1do
if A[1] > A[j]
LIS[i,j] = LIS[i — 1,5]
else
LIS[i, j] = max {LIS[i — 1,],
1+ LIS[i—1,4]}
return LI1S[n,n + 1]

M{[i][5] = min

7 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V, E) and we typically define n = |V | and m = |E|. We define (u, v) as the edge from w to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

+ path: sequence of distinct vertices vy, va, . . ., vi such that v;v;41 € Eforl < ¢ < k — 1. The length of the path is & — 1 (the number of edges in the path).

Note: a single vertex u is a path of length 0.

+ cycle: sequence of distinct vertices vy, va, . . ., vi such that (v;,vi41) € Eforl < ¢ < k —1and (vk,v1) € E. Asingle vertex is not a cycle according to
this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

+ Avertex u is connected to v if there is a path from w to v.
+ The connected component of u, con(u), is the set of all vertices connected to w.

+ Avertex u can reach v if there is a path from u to v. Alternatively v can be reached from w. Let rch(w) be the set of all vertices reachable from w.

Directed acyclic graphs Strongly connected components

- Given G, w is strongl
connecteduto v if vgg T T °
rch(u) and w € rch(w). gscc

+ A maximal group ofG: :

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.

A topological ordering of adag G = (V, E) is an ordering < on V' such that
if (u,v) € Ethenu < v.

vertices that are all
strongly connected to
one nother is called a
strong component.

Kahn(G(V, E)u):
toposort«—empty list
forv e V:
in(w) « |{u|uv—v e E}
while v € V that has in(v) = 0:
Add v to end of toposort
Remove v from V'

O—=0

Metagraph(G(V, E)):
Compute rev(G) by brute force

forvinu — v € E:
in(v) «in(v) — 1
return toposort

Running time: O(n + m)

+ A dag may have multiple topological sorts.

+ A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

ordering < reverse postordering of V' in rev(G)
by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each w in ordering do
if u is not visited and w € V then
Su < nodes reachable by u by DFS(G, u)
Output S,, as a strong connected component
G(V,E) + G — Sy,

DFS and BFS

.

Explore(G,u):
fori < 1ton:
Visited[:] + False
Add u to ToExplore and to .S
Visited[u] < True
Make tree T with root as u
while B is non-empty do
Remove node z from B
for each edge (z, y) in Adj(x) do
if Visited[y] = False
Visited[y] + True
Add y to B, S, T (with = as parent)

Note:

+ If Bis a queue, Explore becomes BFS.
- If Bis a stack, Explore becomes DFS.

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:
Pre/post

i - Forward edge: pre(u) < pre(v) < post(v) < post(u)

bering

- Backward edge: pre(v) < pre(u) < post(u) < post(v)

- Cross edge: pre(u) < post(u) < pre(v) < post(v)

J

Minimum Spanning Tress

Some notes on minimum spanning trees:

- Tree = undirected graph in which any two vertices are connected by ex-
actly one path.

- Tree = a connected graph with no cycles.

+ Sub-graph H of G is spanning for G, if G and H have same connected
components.

+ A minimum spanning tree is composed of all the safe edges in the graph

- Anedge e = (u,v) is a safe edge if there is some partition of V' into S
and V' \ S and e is the unique minimum cost edge crossing S (one end in
S and the otherin V' \ S).

- Anedge e = (u, v) is an unsafe edge if there is some cycle C such that e
is the unique maximum cost edge in C'.

+ All edges are safe or unsafe.

T is & (" T will store edges of a MST)
while T is not spanning do
X +— o
for each connected component S of 7' do
add to X the cheapest edge between Sand V' \ S
Add edgesin X to T
return the set T’

Sort edges in E based on cost
Tisempty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do
pick e = (u,v) € E of minimum cost
if w and v belong to different sets
addeto T
merge the sets containing v and v
return the set T

T+ 3,5+ 9, s+ 1
Yo € V (G) : d(v) + 00,p(v) + &
d(s) < 0
while S # V do
v = argmin, v\ s d(u)
T =T U {vp(v)}
S=SuU{v}
for each u in Adj(v) do
d(u)
c(vu)
if d(u) = c(vu) then
p(u) v
return T’

d(u) < min

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

forv € V do

d(v) « oo
X o
d(s,s) + 0
fori < 1ton do

v < argmin, ¢y x d(u)

X =X U{v}

for u in Adj(v) do

d(u) + min {(d(w), d(v) + £(v,w))}

return d

Running time: O (m+nlogn) (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

0 ifv=sandk =0

e ifv#sandk =0
dvk) =9 {minweE {d(u, k — 1) + £(u,v)}
min

(o, k — 1) else

Base cases: d(s,0) = 0 and d(v,0) = co forallv # s.

foreachv € V do

d(v) < oo
d(s) < 0
fork < 1ton — 1do

foreachv € V do

for each edge (u,v) € in(v) do
d(v) < min{d(v), d(u) + £(u,v)}

return d

Running time: O (nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. Itis a DP algorithm with the following recurrence:

0 ifi=j
o o0 if (4,7) ¢ Eandk =0
b= {d(i,j,k -1
min

[
Gk, k — 1)+ d(k, j k—1) ©o0

Then d(i,j,n — 1) will give the shortest-path distance from i to j.

Metagraph(G(V, E)):
fori € V do
forj ¢ Vdo
d(i, j, 0) < £(i, j)
(* £(i,5) + oo if (4,5) ¢ E, 0 if i =j *)

fork < Oton — 1do

fori e Vdo
forj € V do
3 8 . Jd(i, g k= 1),
Artpld) 6= =nts {d(i, bk — 1)+ d(k, 5,k — 1)
forv € V do

if d(¢,4,n — 1) < 0 then
return '3 negative cycle in G*

returnd(-,-,n — 1)

Running time: ©(n?)

T —

Computational Complexity Classes
Turing-unrecognizable

(everything outside of the complexty classes below)

Semi-Decidable
(recursively-enumerable, recognizable,
Turing-acceptable/recognizable, partially-decidable)

Decidable
(Recursive)

Context-Sensitive

Context-Free

Regular

Algorithmic Complexity Classes (assuming P # N P)

/ Undecidable \
NP — Hard

A general methodology to prove impossibility results.
- Start with some known hard problem X
+ Reduce X to your favorite problem Y

If Y can be solved then so can X = Y. But we know X is hard so Y has
to be hard too. On the other hand if we know Y is easy, then X has to be
easy too.

The Karp reduction, X <p Y suggests that there is a polynomial time re-
duction from X to Y.

Assuming

3/ + R(n): running time of R
\(¢

Ax

+ Q(n): running time of Ay
Running time of A x is O(Q(R(n))

Sample NP-complete problems

CIRCUITSAT: Given a boolean circuit, are there any input values that
make the circuit output TRUE?

3SAT: Given a boolean formula in conjunctive normal form,
with exactly three distinct literals per clause, does the
formula have a satisfying assignment?

INDEPENDENTSET: Given an undirected graph G and integer k, what is there
a subset of vertices > k in G that have no edges among
them?

CLiQUE: Given an undirected graph G and integer k, is there a
complete complete subgraph of G with more than k ver-
tices?

KPARTITION: Given a set X of kn positive integers and an integer k,
can X be partitioned into n, k-element subsets, all with
the same sum?

3CoLoRr: Given an undirected graph G, can its vertices be colored
with three colors, so that every edge touches vertices
with two different colors?

HAMILTONIANPATH: Given graph G (either directed or undirected), is there a
path in G that visits every vertex exactly once?

HAMILTONIANCYCLE: Given a graph G (either directed or undirected), is there
acycle in G that visits every vertex exactly once?

LONGESTPATH: Given a graph G (either directed or undirected, possibly
with weighted edges) and an integer k, does G have a
path > k length?

+ Remember a path is a sequence of distinct vertices [vg , vg, . . . v] such that an edge exists be-
tween any two vertices in the sequence. A cycle is the same with the addition of a edge (v, v1) €
E. Awalk is a path except the vertices can be repeated.

+ Aformula is in conjunction normal form if variables are or'ed together inside a clause and then clauses
are and'ed together. ((z1 V g V &3) A (T3 V x4 V x5)). Disjunctive normal form is the opposite
((z1 Axg Ax3) V (T3 A zg4 A x5))

\.

Sample undecidable problems

ACCEPTONINPUT: Agnr = {(M, w) | M isaTMand M accepts on w }

HALTSONINPUT: Haltrn = {(M,w) | MisaTMand halts on input w }
HALTONBLANK: HaltBrar = {(M) | M isaTM & M halts on blank input }

EMPTINESS: Ery = {(M) | MisaTMand L(M) = @}

EQUALITY: EQrn = {(MA,MB)

M4 and Mp are TM's
and L(Ma) = L(Mp)

	Languages and strings
	Overview of language complexity
	Regular languages
	Context-free languages
	Recursively enumerable languages
	Recursion
	Graph algorithms

