ECE 374 B Complete: Cheatsheet

1 Languages and strings

• The *length* of a string w (denoted by |w|) is the number of symbols in w• For integer $n \ge 0$, Σ^n is set of all strings over Σ of length n. **Definitions** Σ^* is the set of all strings over Σ . Σ^* is the set of all strings of all lengths including empty string. • ε is a *string* containing no symbols. • Ø is the empty set. It contains no strings. If x and y are strings then xy denotes their concatena-tion. Recursively: - xy = y if $x = \varepsilon$ - $xy = \mathbf{a}(wy)$ if $x = \mathbf{a}w$ • v is substring of $w \iff$ there exist strings x, y such String operations - If $x = \varepsilon$ then v is a prefix of w - If $y = \varepsilon$ then v is a suffix of w • A subsequence of a string $w = w_1 w_2 \dots w_n$ is either a subsequence of $w_2 \dots w_n$ or w_1 followed by a subsequence of $w_2 \dots w_n$. - If w is a string then w^n is defined inductively as follows: $w^n = \varepsilon$ if n = 0 or $w^n = ww^{n-1}$ if n > 0

2 Overview of language complexity

Overview						
recursively enumerable context-sensitive context-free regular						
		regu	ılar)			
Grammar	Languages	Production Rules	Automaton	Examples		
Grammar Type-0	Languages			Examples $L = \{w w \text{ is a } TM \text{ which halts} \}$		
		Production Rules $\gamma \rightarrow \alpha$	Automaton	•		
Туре-О	recursively enumerable	Production Rules $\gamma \rightarrow \alpha$ (no constraints)	Automaton Turing machine linear bounded nondeterministic	$L = \{w w \text{ is a } TM \text{ which halts}\}$		

Meaning of symbols:

 $\cdot a$ - terminal

а

• A, B - variables

• α, β, γ - strings in $\{a \cup A\}^*$ where α, β are maybe empty, γ is never empty

^aTable borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

union,

- · concatenation or
- Kleene star

finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.

A regular expression \mathbf{r} over an alphabet Σ is one of the following: Base cases:

- ε denotes the language { ε }
- a denote the language $\{a\}$

Inductive cases: If $\mathbf{r_1}$ and $\mathbf{r_2}$ are regular expressions denoting languages L_1 and L_2 respectively (i.e., $L(\mathbf{r_1}) = L_1$ and $L(\mathbf{r_2}) = L_2$) then,

- + $\mathbf{r_1} + \mathbf{r_2}$ denotes the language $L_1 \cup L_2$
- + $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes the language $L_1 L_2$
- $\mathbf{r_1^*}$ denotes the language L_1^*

Examples:

- + 0^* the set of all strings of 0s, including the empty string
- $(00000)^*$ set of all strings of 0s with length a multiple of 5
- $(0+1)^*$ set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA $N\ accepts\ a\ string\ w$ iff some accepting state is reached by $N\ from$ the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and defined as $L(N)=\{w\mid N \text{ accepts } w\}.$

A nondeterministic finite automaton (NFA) $N=(Q,\Sigma,s,A,\delta)$ is a five tuple where

- $\cdot \, Q$ is a finite set whose elements are called *states*
- + Σ is a finite set called the *input alphabet*
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)

+ $\,s$ and Σ are the same as in DFAs

Example:

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$, the ε -reach(q) is the set of all states that q can reach using only ε -transitions. Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \varepsilon$ -reach (q)

• if
$$w = a$$
 for $a \in \Sigma$, $\delta^*(q, a) = \varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon \operatorname{-reach}(q)} \delta(p, a)\right)$

 $\begin{array}{lll} \cdot \mbox{ if } w &= ax \mbox{ for } a \in \Sigma, x \in \Sigma^*: \ \delta^*(q,w) = \\ \varepsilon \mbox{ reach} \Big(\bigcup_{p \in \varepsilon \mbox{ -reach}(q)} \Big(\bigcup_{r \in \delta^*(p,a)} \delta^*(r,x) \Big) \Big) \end{array}$

Regular closure

Regular languages are closed under union, intersection, complement, difference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The *language accepted* (or recognized) by a DFA M is denoted by L(M) and defined as $L(M) = \{w \mid M \text{ accepts } w\}.$

A deterministic finite automaton (DFA) $M = (Q, \Sigma, s, A, \delta)$ is a five tuple where

- + Q is a finite set whose elements are called *states*
- + Σ is a finite set called the *input alphabet*
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $s \in Q$ is the start state

• $A \subseteq Q$ is the set of *accepting/final* states

Every string has a unique walk along a DFA. We define the extended transition function as $\delta^*:Q\times\Sigma^*\to Q$ defined inductively as follows:

- $$\begin{split} \cdot \ \ \delta^*(q,w) &= q \text{ if } w = \varepsilon \\ \cdot \ \ \delta^*(q,w) &= \delta^*(\delta(q,a),x) \text{ if } w = ax. \end{split}$$
- Can create a larger DFA from multiple smaller DFAs. Suppose
- $L(M_0) = \{w \text{ has an even number of } 0s\}$ (pictured above) and
- $L(M_1) = \{w \text{ has an even number of } 1s\}.$
- $L(M_C) = \{w \text{ has even number of } 0 \text{ s and } 1 \text{ s} \}$

$$\begin{array}{c} \text{Suppose } M_0 = (Q_0, \Sigma, s_0, A_0, \delta_0) \text{ and} \\ \text{start} \rightarrow \begin{pmatrix} q_{(0,0)} \\ 0 \\ 0 \\ q_{(1,0)} \\ 0 \\ q_{(1,1)} \\ q_{(0,1)} \\ q_{(0,1)} \\ q_{(1,1)} \\ q_{(1,$$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.

Arden's rule: If R = Q + RP then $R = QP^*$.

Fooling sets

or

Some languages are not regular (Ex. $L = \{0^n 1^n \mid n \ge 0\}$).

Two states $p,q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

 $\begin{array}{ll} \text{uch that} & \text{Two states } p,q \in Q \text{ are } equivalent \text{ if} \\ \text{for all strings } w \in \Sigma^* \text{, we have that} \\ \delta^*(p,w) \in A \text{ and } \delta^*(q,w) \notin A. \end{array}$

 $\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$

 $\delta^*(p, w) \notin A \text{ and } \delta^*(q, w) \in A.$

For a language L over Σ a set of strings F (could be infinite) is a *fooling set* or *distinguishing set* for L if every two distinct strings $x, y \in F$ are distinguishable.

4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar. A context-free grammar is a quadruple G=(V,T,P,S)

- + V is a finite set of *nonterminal (variable) symbols*
- + T is a finite set of *terminal symbols* (alphabet)
- P is a finite set of *productions*, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$ Formally, $P \subseteq V \times (V \cup T)^*$.
- + $S \in V$ is the start symbol

Example: $L=\{ww^R|w\in\{0,1\}^*\}$ is described by G=(V,T,P,S) where V,T,P and S are defined as follows:

- $V = \{S\}$
- $T = \{0, 1\}$
- $P = \{S \rightarrow \varepsilon \mid 0S0 \mid 1S1\}$ (abbreviation for $S \rightarrow \varepsilon, S \rightarrow 0S0, S \rightarrow 1S1$)
- S = S

Pushdown automata

A pushdown automaton is an NFA with a stack.

The language $L=\{0^n1^n\mid n\geq 0\}$ is recognized by the pushdown automaton:

A nondeterministic pushdown automaton (PDA) $P=(Q,\Sigma,\Gamma,\delta,s,A)$ is a \mathbf{six} tuple where

- + Q is a finite set whose elements are called *states*
- + Σ is a finite set called the *input alphabet*
- Γ is a finite set called the *stack alphabet*
- $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))$ is the transition function
- s is the start state
- A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as (input read), (stack pop) \rightarrow (stack push).

Context-free closure

Context-free languages are closed under union, concatenation, and Kleene star.

They are not closed under intersection or complement.

5 Recursively enumerable languages

Turing Machines

- *n*: new state.
- d: character to write under tape
- head
- ←: Move tape head left.

6 Recursion

Recurrences

Suppose you have a recurrence of the form T(n) = rT(n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If the work at each level is:

 $\begin{array}{lll} \text{Decreasing:} & rf(n/c) = \kappa f(n) \text{ where } \kappa < 1 & T(n) = O(f(n)) \\ \text{Equal:} & rf(n/c) = f(n) & T(n) = O(f(n) \cdot \log_c n) \\ \text{Increasing:} & rf(n/c) = Kf(n) \text{ where } K > 1 & T(n) = O(n^{\log_c r}) \end{array}$

Some useful identities:

- Sum of integers: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- Geometric series closed-form formula: $\sum_{k=0}^{n} ar^k = \frac{1-r^{n+1}}{1-r}$
- Logarithmic identities: $\log(ab) = \log a + \log b, \log(a/b) = \log a \log a$ $\log b, a^{\log_c b} = b^{\log_c a} (a, b, c > 1).$

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a single step in some multi-step process and recursing backwards if it doesn't lead to a solution. For instance, consider the longest increasing subsequence (LIS) problem. You can either check all possible subsequences:

algLISNaive(A[1..n]): $\max = 0$ for each subsequence B of A do if B is increasing and $|B| > \max$ then max = |B|return max

On the other hand, we don't need to generate every subsequence; we only need to generate the subsequences that are increasing:

> LIS_smaller(A[1..n], x): if n = 0 then return 0
> $$\label{eq:max} \begin{split} \max &= \text{LIS_smaller}(A[1..n-1],x) \\ \text{if } A[n] < x \text{ then} \end{split}$$
> $\max = \max \{\max, 1 + \text{LIS}_\text{smaller}(A[1..(n-1)], A[n])\}$ return max

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition of a problem into the same subproblem, solving them separately and combining their results to get a solution for the original problem.

	Algorithm	Runtime	Space
Sorting algo-	Mergesort	$O(n \log n)$	$O(n \log n)$ O(n) (if optimized)
rithms	Quicksort	$O(n^2)$ $O(n \log n)$ if using MoM	O(n)

Karatsuba's algorithm

We can divide and conquer multiplication like so:

$$bc = 10^{n} b_{L} c_{L} + 10^{n/2} (b_{L} c_{R} + b_{R} c_{L}) + b_{R} c_{R}.$$

We can rewrite the equation as:

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R) = (b_L c_L)x^2 + ((b_L + b_R)(c_L + c_R) - b_L c_L - b_R c_R)x + b_R c_R,$$

Its running time is $O(n^{\log_2 3}) = O(n^{1.585})$.

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than $\frac{3}{10}$'s and smaller than $\frac{7}{10}$'s of the array elements. This is used in the linear time selection algorithm to find element of rank k.

```
Median-of-medians (A, i):
   sublists = [A[j:j+5] for j \leftarrow 0, 5, ..., len(A)]
medians = [sorted (sublist)[len (sublist)/2]
                 for sublist ∈ sublists]
      / Base case
    if len (A) \leq 5 return sorted (a)[i]
    // Find median of medians if len (medians) \leq 5
       pivot = sorted (medians)[len (medians)/2]
    else
        pivot = Median-of-medians (medians, len/2)
    // Partitioning step
low = [j for j \in A if j < pivot]
high = [j for j \in A if j > pivot]
```

k = **len** (low) if i < k return Median-of-medians (low, i) else if i > k return Median-of-medians (low, i-k-1) else

return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the length of a longest increasing subsequence in a unordered sequence, where the sequence is assumed to be given as an array. The recurrence can be written as:

$$LIS(i, j) = \begin{cases} 0 & \text{if } i = 0\\ LIS(i - 1, j) & \text{if } A[i] \ge A[j] \\ \max \begin{cases} LIS(i - 1, j) \\ 1 + LIS(i - 1, i) \end{cases} & \text{else} \end{cases}$$

$$\begin{split} \textbf{LIS-Iterative}(A[1..n]):\\ A[n+1] &= \infty\\ \textbf{for } j \leftarrow 0 \text{ to } n\\ \textbf{if } A[\textbf{i}] \leq A[\textbf{j}] \textbf{ then } LIS[0][j] = 1 \end{split}$$

 $\begin{aligned} & \text{for } i \leftarrow 1 \text{ to } n-1 \text{ do} \\ & \text{for } j \leftarrow i \text{ to } n-1 \text{ do} \\ & \text{ if } A[i] \geq A[j] \\ & LIS[i,j] = LIS[i-1,j] \\ & \text{else} \\ & LIS[i,j] = \max \left\{ LIS[i-1,j], \\ & 1+LIS[i-1,i] \right\} \\ & \text{return } LIS[n,n+1] \end{aligned}$

Edit distance

The edit distance problem asks how many edits we need to make to a sequence for it to become another one. The recurrence is given as:

$$Opt(i,j) = \min \begin{cases} \alpha_{x_i y_j} + Opt(i-1,j-1), \\ \delta + Opt(i-1,j), \\ \delta + Opt(i,j-1) \end{cases}$$

Base cases: $Opt(i, 0) = \delta \cdot i$ and $Opt(0, j) = \delta \cdot j$

$$\begin{split} &EDIST(A[1..m],B[1..n])\\ &\text{for }i\leftarrow 1 \text{ to }m\text{ do }M[i,0]=i\delta\\ &\text{for }j\leftarrow 1 \text{ to }n\text{ do }M[0,j]=j\delta \end{split}$$

for
$$i = 1$$
 to m do
for $j = 1$ to n do
$$M[i][j] = \min \begin{cases} COST[A[i]][B[j]] \\ +M[i-1][j-1], \\ \delta + M[i-1][j], \\ \delta + M[i][j-1] \end{cases}$$

7 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V, E) and we typically define n = |V| and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented as **adjacency lists**, or **adjacency matrices** though the former is more commonly used.

- path: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $v_i v_{i+1} \in E$ for $1 \le i \le k-1$. The length of the path is k-1 (the number of edges in the path). Note: a single vertex u is a path of length 0.
- cycle: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. A single vertex is not a cycle according to this definition. Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.
- A vertex u is *connected* to v if there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that enables dynamic programming algorithms to be used on them. A *topological ordering* of a dag G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

 $\begin{aligned} & \textbf{Kahn}(G(V, E), u):\\ & \textbf{toposort} \leftarrow \textbf{empty list}\\ & \textbf{for } v \in V:\\ & \textbf{in}(v) \leftarrow |\{u \mid u \rightarrow v \in E\}|\\ & \textbf{while } v \in V \text{ that has in}(v) = 0:\\ & \textbf{Add } v \text{ to end of toposort}\\ & \textbf{Remove } v \text{ from } V\\ & \textbf{for } v \text{ in } u \rightarrow v \in E:\\ & \textbf{in}(v) \leftarrow \textbf{in}(v) - 1\\ & \textbf{return toposort} \end{aligned}$

Running time: O(n+m)

- A dag may have multiple topological sorts.
- A topological sort can be computed by DFS, in particular by listing the vertices in decreasing post-visit order.

Strongly connected components

Given G, u is strongly connected to v if v ∈ rch(u) and u ∈ rch(v).
A maximal group of G: vertices that are all strongly connected to one nother is called a strong component.

 $\begin{array}{l} \textbf{Metagraph}(G(V, E)):\\ \textbf{Compute rev}(G) \text{ by brute force}\\ \textbf{ordering} \leftarrow \textbf{reverse postordering of } V \text{ in rev}(G)\\ \textbf{by DFS}(\textbf{rev}(G), s) \text{ for any vertex } s\\ \textbf{Mark all nodes as unvisited}\\ \textbf{for each } u \text{ in ordering } \textbf{do}\\ \textbf{if } u \text{ is not visited and } u \in V \textbf{then}\\ S_u \leftarrow \textbf{nodes reachable } by u \text{ by DFS}(G, u)\\ \textbf{Output } S_u \text{ as a strong connected component}\\ G(V, E) \leftarrow G - S_u \end{array}$

DFS and BFS

Pseudocode: Explore (DFS/BFS)

```
Explore(G, u):

for i \leftarrow 1 to n:

Visited[i] \leftarrow False

Add u to ToExplore and to S

Visited[u] \leftarrow True

Make tree T with root as u

while B is non-empty do

Remove node x from B

for each edge (x, y) in Adj(x) do

if Visited[y] = False

Visited[y] \leftarrow True

Add y to B, S, T (with x as parent)
```

Note:

Pre/post

numbering

- If B is a queue, *Explore* becomes BFS.
- If B is a stack, Explore becomes DFS.

Pre and post numbering aids in analyzing the graph structure. By looking at the numbering we can tell if a edge (u, v) is a:
Forward edge: pre(u) < pre(v) < post(v) < post(u)
Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Minimum Spanning Tress

Some notes on minimum spanning trees:

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Sub-graph H of G is *spanning* for G, if G and H have same connected components.
- · A minimum spanning tree is composed of all the safe edges in the graph
- An edge e = (u, v) is a *safe* edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).
- An edge e = (u, v) is an *unsafe* edge if there is some cycle C such that e is the unique maximum cost edge in C.
- All edges are safe or unsafe.

 $\begin{array}{l} T \text{ is } \varnothing \text{ (}^{*} T \text{ will store edges of a MST }\text{)} \\ \textbf{while } T \text{ is not spanning } \textbf{do} \\ X \leftarrow \varnothing \\ \text{ for each connected component } S \text{ of } T \text{ } \textbf{do} \\ \text{ add to } X \text{ the cheapest edge between } S \text{ and } V \setminus S \\ \text{ Add edges in } X \text{ to } T \\ \textbf{return the set } T \end{array}$

seudocode: Kruskal's algorithm: $(m+n)\mathsf{log}(m)$ (using Union-Find structu

```
Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do

pick e = (u, v) \in E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T
```

eudocode: Prim's algorithm: $(n) \mathsf{log}(n) + m$ (using Priority Queue

```
\begin{array}{l} T \leftarrow \varnothing, S \leftarrow \varnothing, s \leftarrow 1 \\ \forall v \in V\left(G\right) : d(v) \leftarrow \infty, p(v) \leftarrow \varnothing \\ d(s) \leftarrow 0 \\ \text{while } S \neq V \text{ do } \\ v = \arg\min_{u \in V \setminus S} d(u) \\ T = T \cup \{vp(v)\} \\ S = S \cup \{v\} \\ \text{ for each } u \text{ in } Adj(v) \text{ do } \\ d(u) \leftarrow \min \begin{cases} d(u) \\ c(vu) \\ if \ d(u) = c(vu) \text{ then } \\ p(u) \leftarrow v \end{cases} \\ \text{ return } T \end{array}
```

Shortest paths

Dijkstra's algorithm:

Find minimum distance from vertex s to **all** other vertices in graphs without negative weight edges.

 $\begin{array}{l} \text{for } v \in V \text{ do} \\ d(v) \leftarrow \infty \\ X \leftarrow \varnothing \\ d(s,s) \leftarrow 0 \\ \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ v \leftarrow \arg\min_{u \in V-X} d(u) \\ X = X \cup \{v\} \\ \text{for } u \text{ in } \text{Adj}(v) \text{ do} \\ d(u) \leftarrow \min \left\{ (d(u), \ d(v) + \ell(v, u)) \right\} \\ \text{return } d \end{array}$

Running time: $O(m+n\log n)$ (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm:

Find minimum distance from vertex s to **all** other vertices in graphs without negative cycles. It is a DP algorithm with the following recurrence:

$$d(v,k) = \begin{cases} 0 & \text{if } v = s \text{ and } k = 0 \\ \infty & \text{if } v \neq s \text{ and } k = 0 \\ \min \begin{cases} \min_{uv \in E} \left\{ d(u,k-1) + \ell(u,v) \right\} \\ d(v,k-1) & \text{else} \end{cases}$$

Base cases: d(s, 0) = 0 and $d(v, 0) = \infty$ for all $v \neq s$.

 $\begin{array}{l} \text{for each } v \in V \text{ do} \\ d(v) \leftarrow \infty \\ d(s) \leftarrow 0 \end{array}$ $\begin{array}{l} \text{for } k \leftarrow 1 \text{ to } n-1 \text{ do} \\ \text{for each } v \in V \text{ do} \\ \text{for each edge } (u,v) \in \text{in}(v) \text{ do} \\ d(v) \leftarrow \min\{d(v), d(u) + \ell(u,v)\} \end{array}$

return d

Running time: O(nm)

Floyd-Warshall algorithm:

Find minimum distance from *every* vertex to *every* vertex in a graph *without* negative cycles. It is a DP algorithm with the following recurrence:

$$d(i, j, k) = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } (i, j) \notin E \text{ and } k = 0 \\ \min \begin{cases} d(i, j, k - 1) \\ d(i, k, k - 1) + d(k, j, k - 1) \end{cases} \text{ else} \end{cases}$$

Then d(i, j, n - 1) will give the shortest-path distance from i to j.

 $\begin{aligned} & \mathsf{Metagraph}(G(V,E)):\\ & \mathsf{for}\ i \in V\ \mathsf{do}\\ & \mathsf{for}\ j \in V\ \mathsf{do}\\ & d(i,j,0) \leftarrow \ell(i,j)\\ & (*\ \ell(i,j) \leftarrow \infty \ \mathsf{if}\ (i,j) \notin E,\ 0\ \mathsf{if}\ i=j\ *) \end{aligned}$

Running time: $\Theta(n^3)$

Complexity Classes

Reductions

A general methodology to prove impossibility results.

- + Start with some known hard problem X
- Reduce X to your favorite problem Y

If Y can be solved then so can $X \implies Y$. But we know X is hard so Y has to be hard too. On the other hand if we know Y is easy, then X has to be easy too.

The Karp reduction, $X \leq_P Y$ suggests that there is a polynomial time reduction from X to Y.

Assuming

- + R(n): running time of ${\mathcal R}$
- + Q(n): running time of \mathcal{A}_Y

Running time of \mathcal{A}_X is O(Q(R(n))

Sample NP-complete problems

CIRCUITSAT:	Given a boolean circuit, are there any input values that make the circuit output $\mathbf{T}_{\rm RUE}?$			
3Sat:	Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?			
IndependentSet:	Given an undirected graph G and integer k, what is there a subset of vertices $\geq k$ in G that have no edges among them?			
CLIQUE:	Given an undirected graph G and integer k , is there a complete complete subgraph of G with more than k vertices?			
KPARTITION:	Given a set X of kn positive integers and an integer k , can X be partitioned into n , k -element subsets, all with the same sum?			
3Color:	Given an undirected graph G , can its vertices be colored with three colors, so that every edge touches vertices with two different colors?			
HamiltonianPath:	Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once?			
HamiltonianCycle:	Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once?			
LongestPath:	Given a graph G (either directed or undirected, possibly with weighted edges) and an integer k, does G have a path $\geq k$ length?			
• Remember a path is a sequence of distinct vertices $[v_1, v_2, \ldots, v_k]$ such that an edge exists between any two vertices in the sequence. A cycle is the same with the addition of a edge $(v_k, v_1) \in E$. A walk is a path except the vertices can be repeated.				

• A formula is in conjunction normal form if variables are or'ed together inside a clause and then clauses are and'ed together: (($x_1 \lor x_2 \lor x_3$) \land ($\overline{x_2} \lor x_4 \lor x_5$)). Disjunctive normal form is the opposite (($x_1 \land x_2 \land x_3$) \lor ($\overline{x_2} \land x_4 \land x_5$)).

Sample undecidable problems

ACCEPTONINPUT: $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts on } w \}$

HALTSONINPUT: $Halt_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and halts on input } w \}$

HALTONBLANK: $HaltB_{TM} = \{ \langle M \rangle \mid M \text{ is a TM \& } M \text{ halts on blank input} \}$

EMPTINESS: $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

EQUALITY: $EQ_{TM} = \left\{ \langle M_A, M_B \rangle \mid \begin{array}{c} M_A \text{ and } M_B \text{ are TM's} \\ \text{and } L(M_A) = L(M_B) \end{array} \right\}$