ECE 374 B Complete: Cheatsheet

1 Languages and strings

Languages

An alphabet Σ is a finite set of symbols.
Definitions A string in Σ^{*} is a finite sequence of symbols in Σ.

- A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

$$
L_{M U L T 2}=\left\{\begin{array}{ccc}
1 \times 1 \mid 1, & 1 \times 2 \mid 2, & 1 \times 3 \mid 3, \ldots \tag{1}\\
2 \times 1 \mid 2, & 2 \times 2 \mid 4, & 2 \times 3 \mid 6, \ldots \\
\vdots & \vdots & \vdots \\
n \times 1 \mid n, & n \times 2 \mid 2 n, & n \times 3 \mid 3 n, \ldots
\end{array}\right\}
$$

For languages A, B the concatenation of A, B is $A B=$ $\{x y \mid x \in A, y \in B\}$.

- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \backslash B$ (also written as $A-B$).
Language operations

For language $A \subseteq \Sigma^{*}$ the complement of A is $\bar{A}=\Sigma^{*} \backslash A$. Σ^{n} is the set of all strings of length n.

- $\Sigma^{*}=\cup_{n \geq 0} \Sigma^{n}$ is the set of all strings over Σ.
- $\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}$ is the set of non-empty strings over Σ.

Strings

- The length of a string w (denoted by $|w|$) is the number of symbols in w.
- For integer $n \geq 0, \Sigma^{n}$ is set of all strings over Σ of length n

Definitions Σ^{*} is the set of all strings over Σ.

- Σ^{*} is the set of all strings of all lengths including empty string
- ε is a string containing no symbols.
- \varnothing is the empty set. It contains no strings.
- If x and y are strings then $x y$ denotes their concatenation. Recursively:
- $x y=y$ if $x=\varepsilon$
- $x y=a(w y)$ if $x=a w$
- v is substring of $w \Longleftrightarrow$ there exist strings x, y such that $w=x v y$.
- If $x=\varepsilon$ then v is a prefix of w
- If $y=\varepsilon$ then v is a suffix of w
- A subsequence of a string $w=w_{1} w_{2} \ldots w_{n}$ is either a subsequence of $w_{2} \ldots w_{n}$ or w_{1} followed by a subsequence of $w_{2} \ldots w_{n}$.
- If w is a string then w^{n} is defined inductively as follows: $w^{n}=\varepsilon$ if $n=0$ or $w^{n}=w w^{n-1}$ if $n>0$

2 Overview of language complexity

Overview

Grammar	Languages	Production Rules	Automaton	Examples

Meaning of symbols:

- a - terminal
- A, B - variables
- α, β, γ - strings in $\{a \cup A\}^{*}$ where α, β are maybe empty, γ is never empty

[^0]
3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

- union,
- concatenation or
- Kleene star
finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- \varnothing the language \varnothing
- ε denotes the language $\{\varepsilon\}$
- a denote the language $\{a\}$

Inductive cases: If \mathbf{r}_{1} and \mathbf{r}_{2} are regular expressions denoting languages L_{1} and L_{2} respectively (i.e., $L\left(\mathbf{r}_{1}\right)=L_{1}$ and $L\left(\mathbf{r}_{2}\right)=L_{2}$) then.

- $\mathbf{r}_{1}+\mathbf{r}_{2}$ denotes the language $L_{1} \cup L_{2}$
- $\mathbf{r}_{1} \cdot \mathbf{r}_{\mathbf{2}}$ denotes the language $L_{1} L_{2}$
- \mathbf{r}_{1}^{*} denotes the language L_{1}^{*}

Examples:

- 0^{*} - the set of all strings of 0 s , including the empty string
- $(00000)^{*}$ - set of all strings of 0 s with length a multiple of 5
- $(0+1)^{*}$ - set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w

The language accepted (or recognized) by an NFA N is denoted $L(N)$ and defined as $L(N)=\{w \mid N$ accepts $w\}$.

A nondeterministic finite automaton (NFA) $N=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)
- s and Σ are the same as in DFAs

Example:

$$
\begin{aligned}
& \text { - } Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \text { - } \Sigma=\{0,1\}
\end{aligned}
$$

	ε	0	1
q_{0}	\{q0 \}	\{q0 \}	$\left\{q_{0}, q_{1}\right\}$
(3) δ : q_{1}	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$	\varnothing
q_{2}	$\left\{q_{2}\right\}$	\varnothing	$\left\{q_{3}\right\}$
q_{3}	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$
$s=q_{0}$			
- $A=\left\{q_{3}\right.$			

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$, the ε-reach (q) is the set of all states that q can reach using only ε-transitions.
Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\varepsilon$-reach (q)
- if $w=a$ for $a \in \Sigma, \quad \delta^{*}(q, a)=\varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon-\text { reach }(q)} \delta(p, a)\right)$
- if $w=a x$ for $a \in \Sigma, x \in \Sigma^{*}: \delta^{*}(q, w)=$ $\varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon \text {-reach }(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$

Regular closure

Regular languages are closed under union, intersection, complement, difference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by $L(M)$ and defined as $L(M)=\{w \mid M$ accepts $w\}$.

A deterministic finite automaton (DFA) $M=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $s \in Q$ is the start state
- $A \subseteq Q$ is the set of accepting/final states

Example:

$$
\cdot Q=\left\{q_{0}, q_{1}\right\}
$$

- $\Sigma=\{0,1\}$
- $\delta:$| | 0 | 1 |
| :--- | :--- | :--- |
| q_{0} | q_{1} | q_{0} |
| q_{1} | q_{0} | q_{1} |
- $s=q_{0}$
- $A=\left\{q_{0}\right\}$

Every string has a unique walk along a DFA. We define the extended transition function as $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows

- $\delta^{*}(q, w)=q$ if $w=\varepsilon$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Can create a larger DFA from multiple smaller DFAs. Suppose

- $L\left(M_{0}\right)=\{w$ has an even number of 0 s $\}$ (pictured above) and
- $L\left(M_{1}\right)=\{w$ has an even number of 1 s$\}$.
$L\left(M_{C}\right)=\{w$ has even number of 0 s and 1 s$\}$

Suppose $M_{0}=\left(Q_{0}, \Sigma, s_{0}, A_{0}, \delta_{0}\right)$ and $M_{1}=\left(Q_{1}, \Sigma, s_{1}, A_{1}, \delta_{1}\right)$. Then

- $\underset{Q_{1}}{Q=} Q_{0} \times Q_{1}=\left\{\left(q_{0}, q_{1}\right) \mid q_{0} \in Q_{0}, q_{1} \in\right.$ $\left.Q_{1}\right\}$
- $s=\left(s_{0}, s_{1}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$, where $\delta\left(\left(q_{0}, q_{1}\right), a\right)=$ $\left(\delta_{0}\left(q_{0}, a\right), \delta_{1}\left(q_{1}, a\right)\right)$
- $A=\left\{\left(q_{0}, q_{1}\right) \mid q_{0} \in A_{0}\right.$ and $\left.q_{1} \in A_{1}\right\}$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.

Arden's rule: If $R=Q+R P$ then $R=Q P^{*}$

Fooling sets

Some languages are not regular (Ex. $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$).
Two states $p, q \in Q$ are distinguish-
able if there exists a string $w \in \Sigma^{*}$ such that

$$
\delta^{*}(p, w) \in A \text { and } \delta^{*}(q, w) \notin A .
$$

or $\quad \delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A$
$\delta^{*}(p, w) \notin A$ and $\delta^{*}(q, w) \in A$.
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

4 Context－free languages

Context－free languages

A language is context－free if it can be generated by a context－free grammar． A context－free grammar is a quadruple $G=(V, T, P, S)$
－V is a finite set of nonterminal（variable）symbols
－T is a finite set of terminal symbols（alphabet）
－P is a finite set of productions，each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^{*}$ Formally，$P \subseteq V \times(V \cup T)^{*}$
－$S \in V$ is the start symbol
Example：$L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$ is described by $G=(V, T, P, S)$ where V, T, P and S are defined as follows：
－$V=\{S\}$
－$T=\{0,1\}$
－$P=\{S \rightarrow \varepsilon|0 S 0| 1 S 1\}$
（abbreviation for $S \rightarrow \varepsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$ ）
－$S=S$

Pushdown automata

A pushdown automaton is an NFA with a stack．
The language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is recognized by the pushdown au－ tomaton：

A nondeterministic pushdown automaton（PDA）$P=(Q, \Sigma, \Gamma, \delta, s, A)$ is a six tuple where
－Q is a finite set whose elements are called states
－Σ is a finite set called the input alphabet
－Γ is a finite set called the stack alphabet
－$\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is the transition function
－s is the start state
－A is the set of accepting states
In the graphical representation of a PDA，transitions are typically written as〈input read〉，〈stack pop〉 \rightarrow 〈stack push〉

A CFG can be converted

Context－free closure

Context－free languages are closed under union，concatenation，and Kleene star．

They are not closed under intersection or complement．

5 Recursively enumerable languages

Turing Machines

Turing machine is the simplest model of computation．
－Input written on（infinite）one sided tape
－Special blank characters．
－Finite state control（similar to DFA）．
－Ever step：Read character under head，write character out，move the head right or left（or stay）
－Every TM M can be encoded as a
 string $\langle M\rangle$

Transition Function：$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\leftarrow, \rightarrow, \square\}$
$\delta(q, c)=(p, d, \leftarrow)$
－q ：current state．

－p ：new state．
－d：character to write under tape head
－\leftarrow ：Move tape head left

6 Recursion

Simple recursion

- Reduction: solve one problem using the solution to another.
- Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

Definitions -| Problem instance of size n is reduced to one or more in- |
| :--- |
stances of size $n-1$ or less.

For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to move n disks one at a time from the first peg to the last peg

```
Pseudocode: Tower of Hanoi
Hanoi ( }n\mathrm{ , src, dest, tmp):
    if ( }n>0)\mathrm{ then
        Hanoi ( }n-1\mathrm{ , src, tmp, dest)
        Move disk n from sre to dest
        Hanoi ( }n-1\mathrm{ , tmp, dest, src)
```


Recurrences

```
Suppose you have a recurrence of the form T( n)=rT(n/c)+f(n).
```

The master theorem gives a good asymptotic estimate of the recurrence. If the work at each level is:

$$
\begin{array}{lll}
\text { Decreasing: } & r f(n / c)=\kappa f(n) \text { where } \kappa<1 & T(n)=O(f(n)) \\
\text { Equal: } & r f(n / c)=f(n) & T(n)=O\left(f(n) \cdot \log _{c} n\right) \\
\text { Increasing: } & r f(n / c)=K f(n) \text { where } K>1 & T(n)=O\left(n^{\log _{c} r}\right)
\end{array}
$$

Some useful identities:

- Sum of integers: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
- Geometric series closed-form formula: $\sum_{k=0}^{n} a r^{k}=\frac{1-r^{n+1}}{1-r}$
- Logarithmic identities: $\log (a b)=\log a+\log b, \log (a / b)=\log a-$ $\log b, a^{\log _{c} b}=b^{\log _{c} a}(a, b, c>1)$.

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a single step in some multi-step process and recursing backwards if it doesn't lead to a solution. For instance, consider the longest increasing subsequence (LIS) problem. You can either check all possible subsequences

Pseudocode: LIS - Naive enumeration

```
algLISNaive(A[1..n])
    maxmax = 0
    for each subsequence B of }A\mathrm{ do
        if B}\mathrm{ is increasing and }|B|>\operatorname{max}\mathrm{ then
            max = |B|
    return max
```

On the other hand, we don't need to generate every subsequence: we only need to generate the subsequences that are increasing Pseudocode: LIS - Backtracking

LIS_smaller $(A[1 . . n], x)$:
if $n=0$ then return 0
$\max =$ LIS_smaller $(A[1 . . n-1], x)$
if $A[n]<x$ then
$\max =\max \{\max , 1+$ LIS_smaller $(A[1 . .(n-1)], A[n])\}$
return max

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition of a problem into the same subproblem, solving them separately and combining their results to get a solution for the original problem.

	Algorithm	Runtime	Space
Sorting algorithms	Mergesort	$O(n \log n)$	$\begin{aligned} & O(n \log n) \\ & O(n) \text { (if optimized) } \end{aligned}$
	Quicksort	$\begin{aligned} & O\left(n^{2}\right) \\ & O(n \log n) \text { if using MoM } \end{aligned}$	$O(n)$

We can divide and conquer multiplication like so:

$$
b c=10^{n} b_{L} c_{L}+10^{n / 2}\left(b_{L} c_{R}+b_{R} c_{L}\right)+b_{R} c_{R}
$$

We can rewrite the equation as:

$$
\begin{gathered}
b c=b(x) c(x)=\left(b_{L} x+b_{R}\right)\left(c_{L} x+c_{R}\right)=\left(b_{L} c_{L}\right) x^{2} \\
+\left(\left(b_{L}+b_{R}\right)\left(c_{L}+c_{R}\right)-b_{L} c_{L}-b_{R} c_{R}\right) x \\
+b_{R} c_{R},
\end{gathered}
$$

Its running time is $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$.

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than $\frac{3}{10}$'s and smaller than $\frac{7}{10}$'s of the array elements. This is used in the linear time selection algorithm to find element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i)
sublists $=[$ Alj $j \mathrm{j}+5]$ for $\mathrm{j} \leftarrow 0,5, \ldots$, len $(A)]$
medians = [sorted (sublist)/[len (sublist)/2]
for sublist \in sublists]
// Base case
if len $(A) \leq 5$ return sorted (a) [i]
// Find median of medians
if len (medians) ≤ 5
pivot = sorted (medians)[len (medians)/2] else
pivot $=$ Median-of-medians $($ medians, len/2)
// Partitioning step
Low = lj for $j \in A$ if j < pivot]
high $=[j$ for $j \in A$ if $j>$ pivot $]$
$k=$ len (low)
if $i<k$
return Median-of-medians (Low, i)
else if $i>k$
return Median-of-medians (low, i-k-1) else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the length of a longest increasing subsequence in a unordered sequence, where the sequence is assumed to be given as an array. The recurrence can be written as:

$$
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } i=0 \\
\operatorname{LIS}(i-1, j) & \text { if } A[i] \geq A[j] \\
\max \left\{\begin{array}{cl}
\operatorname{LIS}(i-1, j) \\
1+\operatorname{LIS}(i-1, i)
\end{array}\right. & \text { else }\end{cases}
$$

Pseudocode: LIS - DP
LIS-Iterative $(A[1 . . n])$:

$$
A[n+1]=\infty
$$

for $j \leftarrow 0$ to n
if $\mathrm{A}[\mathrm{i}] \leq \mathrm{A}[j]$ then $L I S[0][j]=1$
for $i \leftarrow 1$ to $n-1$ do
for $j \leftarrow i$ to $n-1$ do
if $A[i] \geq A[j]$
$L I S[i, j]=L I S[i-1, j]$
else
$L I S[i, j]=\max \{L I S[i-1, j]$,
$1+\operatorname{LIS}[i-1, i]\}$
return $L I S[n, n+1]$

Edit distance

The edit distance problem asks how many edits we need to make to a sequence for it to become another one. The recurrence is given as:

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j), \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base cases: $\operatorname{Opt}(i, 0)=\delta \cdot i$ and $\operatorname{Opt}(0, j)=\delta \cdot j$

$$
E D I S T(A[1 . . m], B[1 . . n])
$$

$$
\text { for } i \leftarrow 1 \text { to } m \text { do } M[i, 0]=i \delta
$$

$$
\text { for } j \leftarrow 1 \text { to } n \text { do } M[0, j]=j \delta
$$

$$
\text { for } i=1 \text { to } m \text { do }
$$

for $j=1$ to n do

$$
M[i][j]=\min \left\{\begin{array}{l}
\operatorname{COST}[A[i]][B[j]] \\
\quad+M[i-1][j-1] \\
\delta+M[i-1][j] \\
\delta+M[i][j-1]
\end{array}\right.
$$

7 Graph algorithms

Graph basics

A graph is defined by a tuple $G=(V, E)$ and we typically define $n=|V|$ and $m=|E|$. We define (u, v) as the edge from u to v. Graphs can be represented as adjacency lists, or adjacency matrices though the former is more commonly used.

- path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) Note: a single vertex u is a path of length 0 .
- cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$. A single vertex is not a cycle according to this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.
- A vertex u is connected to v if there is a path from u to v.
- The connected component of $u, \operatorname{con}(u)$, is the set of all vertices connected to u.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let $r c h(u)$ be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that enables dynamic programming algorithms to be used on them.
A topological ordering of a dag $G=(V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Pseudocode: Kahn's algorithm
$\operatorname{Kahn}(G(V, E), u)$:
toposort \leftarrow empty list
for $v \in V$:
$\operatorname{in}(v) \leftarrow|\{u \mid u \rightarrow v \in E\}|$
while $v \in V$ that has in $(v)=0$
Add v to end of toposort
Remove v from V
for v in $u \rightarrow v \in E$:
$\operatorname{in}(v) \leftarrow \operatorname{in}(v)-1$
return toposort

Running time: $O(n+m)$

- A dag may have multiple topological sorts.
- A topological sort can be computed by DFS, in particular by listing the vertices in decreasing post-visit order

Strongly connected components

- Given G, u is strongly connected to v if $v \in$ $\operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.
- A maximal group of G vertices that are all strongly connected to one nother is called a
 strong component

Pseudocode: Metagraph - linear time

Metagraph $(G(V, E))$:
Compute rev (G) by brute force
ordering \leftarrow reverse postordering of V in $\operatorname{rev}(G)$
by $\operatorname{DFS}(\operatorname{rev}(G), s)$ for any vertex s
Mark all nodes as unvisited
for each u in ordering do
if u is not visited and $u \in V$ then
$S_{u} \leftarrow$ nodes reachable by u by $\operatorname{DFS}(G, u)$
Output S_{u} as a strong connected component
$G(V, E) \leftarrow G-S_{u}$

DFS and BFS

Pseudocode: Explore (DFF/BFS)

Explore(G,u)

for $i \leftarrow 1$ to n
Visited $[i] \leftarrow$ False
Add u to ToExplore and to S
Visited $[u] \leftarrow$ True
Make tree T with root as u
while B is non-empty do
Remove node x from B
for each edge (x, y) in $\operatorname{Adj}(x)$ do
if Visited [y] = False
Visited $[y] \leftarrow$ True
Add y to B, S, T (with x as parent)

Note:

- If B is a queue, Explore becomes BFS .
- If B is a stack, Explore becomes DFS.

Minimum Spanning Tress

Some notes on minimum spanning trees:

- Tree = undirected graph in which any two vertices are connected by exactly one path.
- Tree = a connected graph with no cycles.
- Sub-graph H of G is spanning for G, if G and H have same connected components.
- A minimum spanning tree is composed of all the safe edges in the graph
- An edge $e=(u, v)$ is a safe edge if there is some partition of V into S and $V \backslash S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \backslash S$).
- An edge $e=(u, v)$ is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C.
- All edges are safe or unsafe.

Pseudocode: Boruvka's algorithm: $O(m \log (n))$

T is $\varnothing(* T$ will store edges of a MST *)
while T is not spanning do
$X \leftarrow \varnothing$
for each connected component S of T do add to X the cheapest edge between S and $V \backslash S$ Add edges in X to T
return the set T

Pseudocode: Kruskal's algorithm: $(m+n) \log (m)$ (using Union-Find structure)

Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do
pick $e=(u, v) \in E$ of minimum cost
if u and v belong to different sets add e to T
merge the sets containing u and v
return the set T

Pseudocode: Prim's algorithm: $(n) \boldsymbol{\operatorname { l o g }}(n)+m$ (using Priority Queue)

$T \leftarrow \varnothing, S \leftarrow \varnothing, s \leftarrow 1$
$\forall v \in V(G): d(v) \leftarrow \infty, p(v) \leftarrow \varnothing$
$d(s) \leftarrow 0$
while $S \neq V$ do

$$
v=\arg \min _{u \in V \backslash S} d(u)
$$

$$
T=T \cup\{v p(v)\}
$$

$S=S \cup\{v\}$
for each u in $A d j(v)$ do

$$
d(u) \leftarrow \min \left\{\begin{array}{l}
d(u) \\
c(v u)
\end{array}\right.
$$

$$
\text { if } d(u)=c(v u) \text { then }
$$

return T

$$
p(u) \leftarrow v
$$

Shortest paths

Dijkstra's algorithm:

Find minimum distance from vertex s to all other vertices in graphs without negative weight edges.

Pseudocode: Difkstra

```
for \(v \in V\) do
    \(d(v) \leftarrow \infty\)
\(X \leftarrow \varnothing\)
\(d(s, s) \leftarrow 0\)
for \(i \leftarrow 1\) to \(n\) do
    \(v \leftarrow \arg \min _{u \in V-X} d(u)\)
    \(X=X \cup\{v\}\)
    for \(u\) in \(\operatorname{Adj}(v)\) do
        \(d(u) \leftarrow \min \{(d(u), d(v)+\ell(v, u))\}\)
return \(d\)
```

Running time: $O(m+n \log n)$ (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm

Find minimum distance from vertex s to all other vertices in graphs without negative cycles. It is a DP algorithm with the following recurrence:

$$
d(v, k)= \begin{cases}0 & \text { if } v=s \text { and } k=0 \\ \infty & \text { if } v \neq s \text { and } k=0 \\ \min \begin{cases}\min _{u v \in E}\{d(u, k-1)+\ell(u, v)\} \\ d(v, k-1) & \text { else }\end{cases} \end{cases}
$$

Base cases: $d(s, 0)=0$ and $d(v, 0)=\infty$ for all $v \neq s$
Pseudocode: Bellman-Ford

$$
\begin{aligned}
& \text { for each } v \in V \text { do } \\
& \quad d(v) \leftarrow \infty \\
& d(s) \leftarrow 0 \\
& \text { for } k \leftarrow 1 \text { to } n-1 \text { do } \\
& \quad \text { for each } v \in V \text { do } \\
& \quad \text { for each edge }(u, v) \in \operatorname{in}(v) \text { do } \\
& \quad d(v) \leftarrow \min \{d(v), d(u)+\ell(u, v)\}
\end{aligned}
$$

return d

Running time: $O(n m)$

Floyd-Warshall algorithm:

Find minimum distance from every vertex to every vertex in a graph without negative cycles. It is a DP algorithm with the following recurrence:

$$
d(i, j, k)= \begin{cases}0 & \text { if } i=j \\
\infty & \text { if }(i, j) \notin E \text { and } k=0 \\
\min \left\{\begin{array}{l}
d(i, j, k-1) \\
d(i, k, k-1)+d(k, j, k-1)
\end{array} \quad\right. \text { else }\end{cases}
$$

Then $d(i, j, n-1)$ will give the shortest-path distance from i to j

Pseudocode: Floyd-Warshall

```
Metagraph(G(V,E)):
```

 for \(i \in V\) do
 for \(j \in V\) do
 \(d(i, j, 0) \leftarrow \ell(i, j)\)
 \((* \ell(i, j) \leftarrow \infty\) if \((i, j) \notin E, 0\) if \(i=j *)\)
 for \(k \leftarrow 0\) to \(n-1\) do
 for \(i \in V\) do
 for \(j \in V\) do
 $$
d(i, j, k) \leftarrow \min \left\{\begin{array}{l}
d(i, j, k-1), \\
d(i, k, k-1)+d(k, j, k-1)
\end{array}\right.
$$

for $v \in V$ do
if $d(i, i, n-1)<0$ then
return " \exists negative cycle in $G^{\prime \prime}$
return $d(\cdot, \cdot, n-1)$

Running time: $\Theta\left(n^{3}\right)$

Complexity Classes

Computational Complexity Classes

Algorithmic Complexity Classes (assuming $P \neq N P$)

Reductions

A general methodology to prove impossibility results.

- Start with some known hard problem X
- Reduce X to your favorite problem Y

If Y can be solved then so can $X \Longrightarrow Y$. But we know X is hard so Y has to be hard too. On the other hand if we know Y is easy, then X has to be easy too.

The Karp reduction, $X \leq_{P} Y$ suggests that there is a polynomial time reduction from X to Y.

Assuming

- $R(n)$: running time of \mathcal{R}
- $Q(n)$: running time of \mathcal{A}_{Y}

Running time of \mathcal{A}_{X} is $O(Q(R(n))$

Sample NP-complete problems

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?
INDEPENDENTSET: Given an undirected graph G and integer k, what is there a subset of vertices $\geq k$ in G that have no edges among them?
Clique: Given an undirected graph G and integer k, is there a complete complete subgraph of G with more than k vertices?
KPARTITION: Given a set X of $k n$ positive integers and an integer k, can X be partitioned into n, k-element subsets, all with the same sum?

3CoLor: Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once?
HAMILTONIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once?
LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges) and an integer k , does G have a path $\geq k$ length?
Remember a path is a sequence of distinct vertices $\left[v_{1}, v_{2}, \ldots v_{k}\right]$ such that an edge exists between any two vertices in the sequence. A cycle is the same with the addition of a edge (v_{k}, v_{1}) \in E A walk is a path except the vertices can be repeated

A formula is in conjunction normal form if variables are or'ed together inside a clause and then clauses are and'ed together: $\left(\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)\right)$. Disjunctive normal form is the opposite $\left(\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(\overline{x_{2}} \wedge x_{4} \wedge x_{5}\right)\right.$

Sample undecidable problems

Acceptoninput: $A_{T M}=\{\langle M, w\rangle \mid M$ is a TM and M accepts on $w\}$

HALTSONINPUT: Halt $_{T M}=\{\langle M, w\rangle \mid M$ is a TM and halts on input $w\}$
HaltOnBlank: Halt $B_{T M}=\{\langle M\rangle \mid M$ is a TM \& M halts on blank input $\}$

Emptiness: $E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\varnothing\}$
EQUALITY: $E Q_{T M}=\left\{\begin{array}{l|l}\left\langle M_{A}, M_{B}\right\rangle & \begin{array}{l}M_{A} \text { and } M_{B} \text { are TM's } \\ \text { and } L\left(M_{A}\right)=L\left(M_{B}\right)\end{array}\end{array}\right\}$

[^0]: ${ }^{a}$ Table borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

