
ECE 374 B Complete: Cheatsheet

1 Languages and strings

Languages

De�nitions

• An alphabet Σ is a �nite set of symbols.

• A string in Σ∗ is a �nite sequence of symbols in Σ.

• A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

LMULT2 =


1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...
n× 1|n, n× 2|2n, n× 3|3n, . . .

 (1)

Language
operations

• For languages A,B the concatenation of A,B is AB =
{xy | x ∈ A, y ∈ B}.

• For languages A,B, their union is A ∪ B, intersection is
A ∩ B, and di�erence isA \ B (also written asA− B).

• For languageA ⊆ Σ∗ the complement ofA is Ā = Σ∗ \A.

• Σn is the set of all strings of length n.

• Σ∗ = ∪n≥0Σn is the set of all strings over Σ.

• Σ+ = ∪n≥1Σn is the set of non-empty strings over Σ.

Strings

De�nitions

• The length of a stringw (denoted by |w|) is the number of sym-
bols in w.

• For integer n ≥ 0, Σn is set of all strings over Σ of length n.
Σ∗ is the set of all strings over Σ.

• Σ∗ is the set of all strings of all lengths including empty string.

• ε is a string containing no symbols.

• ∅ is the empty set. It contains no strings.

• If x and y are strings then xy denotes their concatena-
tion. Recursively:

– xy = y if x = ε

– xy = a(wy) if x = aw

• v is substring of w ⇐⇒ there exist strings x, y such
that w = xvy.

– If x = ε then v is a pre�x of w

– If y = ε then v is a su�x of w

• A subsequence of a string w = w1w2 . . . wn is either
a subsequence of w2 . . . wn or w1 followed by a sub-
sequence of w2 . . . wn .

• Ifw is a string thenwn is de�ned inductively as follows:
wn = ε if n = 0 or wn = wwn−1 if n > 0

String
operations

2 Overview of language complexity

Overview

regular

context-free

context-sensitive

recursively enumerable

Grammar Languages Production Rules Automaton Examples

Type-0 recursively enumerable
γ → α
(no constraints) Turing machine L = {w|w is a TM which halts}

Type-1 context-sensitive αAβ → αγβ
linear bounded
nondeterministic
Turing machine

L = {anbncn|n > 0}

Type-2 context-free A→ α
nondeterministic
pushdown automata L = {anbn|n > 0}

Type-3 regular A→ aB �nite state machine L = {an|n > 0}

Meaning of symbols:
• a - terminal
• A,B - variables
• α, β, γ - strings in {a ∪ A}∗ where α, β are maybe empty, γ is never empty

a

aTable borrowed fromWikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from �nite languages
by applying

• union,

• concatenation or

• Kleene star

�nitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ the language∅
• ε denotes the language {ε}

• a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L1 and L2 respectively (i.e.,L(r1) = L1 and L(r2) = L2) then,

• r1 + r2 denotes the language L1 ∪ L2

• r1·r2 denotes the language L1L2

• r∗1 denotes the language L∗1

Examples:

• 0∗ - the set of all strings of 0s, including the empty string

• (00000)∗ - set of all strings of 0s with length a multiple of 5

• (0 + 1)∗ - set of all binary strings

Nondeterministic �nite automata
NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFAN accepts a string w i� some accepting state is reached byN from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
de�ned as L(N) = {w | N accepts w}.

A nondeterministic �nite automaton (NFA) N = (Q,Σ, s, A, δ) is a �ve tuple
where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• δ : Q×Σ∪{ε} → P(Q) is the transition function (hereP(Q) is the power
set ofQ)

• s and Σ are the same as in DFAs

Example:

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0, q1, q2, q3}

• Σ = {0, 1}

• δ :

ε 0 1
q0 {q0} {q0} {q0, q1}
q1 {q1, q2} {q2} ∅
q2 {q2} ∅ {q3}
q3 {q3} {q3} {q3}

• s = q0

• A = {q3}

For NFA N = (Q,Σ, δ, s, A) and q ∈ Q, the ε-reach(q) is the set of all
states that q can reach using only ε-transitions.
Inductive de�nition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q, w) = ε-reach(q)

• if w = a for a ∈ Σ, δ∗(q, a) = εreach
(⋃

p∈ε-reach(q) δ(p, a)
)

• if w = ax for a ∈ Σ, x ∈ Σ∗ : δ∗(q, w) =

εreach
(⋃

p∈ε-reach(q)

(⋃
r∈δ∗(p,a) δ

∗(r, x)
))

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Deterministic �nite automata
DFAs are �nite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M)
and de�ned as L(M) = {w |M accepts w}.

A deterministic �nite automaton (DFA) M = (Q,Σ, s, A, δ) is a �ve tuple
where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• δ : Q× Σ→ Q is the transition function

• s ∈ Q is the start state

• A ⊆ Q is the set of accepting/�nal states

Example:

q0start q1

1
0

1

0

• Q = {q0, q1}

• Σ = {0, 1}

• δ :
0 1

q0 q1 q0
q1 q0 q1

• s = q0

• A = {q0}

Every string has a unique walk along a DFA. We de�ne the extended transi-
tion function as δ∗ : Q× Σ∗ → Q de�ned inductively as follows:

• δ∗(q, w) = q if w = ε

• δ∗(q, w) = δ∗(δ(q, a), x) if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

• L(M0) = {w has an even number of 0s} (pictured above) and

• L(M1) = {w has an even number of 1s}.

L(MC) = {w has even number of 0s and 1s}

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

Suppose M0 = (Q0,Σ, s0, A0, δ0) and
M1 = (Q1,Σ, s1, A1, δ1). Then

• Q = Q0×Q1 = {(q0, q1) | q0 ∈ Q0, q1 ∈
Q1}

• s = (s0, s1)

• δ : Q × Σ → Q, where δ((q0, q1), a) =
(δ0(q0, a), δ1(q1, a))

• A = {(q0, q1) | q0 ∈ A0 and q1 ∈ A1}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

regular
expressions

DFAsNFAs

→
NFA→

D
FA

algebraic m
ethod

subset construction

st
at
e
re

m
ov
al

Th
om
ps
on
’s
alg
o

Thompson’s algorithm:

L = Ls ∪ Lt L = L∗s

L = Ls · Lt

Arden’s rule: IfR = Q+ RP thenR = QP∗ .

Fooling sets

Some languages are not regular (Ex. L = {0n1n | n ≥ 0}).

Two states p, q ∈ Q are distinguish-
able if there exists a string w ∈ Σ∗ ,
such that

δ
∗
(p, w) ∈ A and δ∗(q, w) /∈ A.

or

δ
∗
(p, w) /∈ A and δ∗(q, w) ∈ A.

Two states p, q ∈ Q are equivalent if
for all strings w ∈ Σ∗ , we have that

δ
∗
(p, w) ∈ A ⇐⇒ δ

∗
(q, w) ∈ A.

For a languageL overΣ a set of stringsF (could be in�nite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguish-
able.

4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadrupleG = (V, T, P, S)

• V is a �nite set of nonterminal (variable) symbols

• T is a �nite set of terminal symbols (alphabet)

• P is a �nite set of productions, each of the formA→ αwhereA ∈ V and
α is a string in (V ∪ T)∗ Formally, P ⊆ V × (V ∪ T)∗ .

• S ∈ V is the start symbol

Example: L = {wwR|w ∈ {0, 1}∗} is described by G = (V, T, P, S)
where V, T, P and S are de�ned as follows:

• V = {S}

• T = {0, 1}

• P = {S → ε | 0S0 | 1S1}
(abbreviation for S → ε, S → 0S0, S → 1S1)

• S = S

Pushdown automata
A pushdown automaton is an NFA with a stack.

The language L = {0n1n | n ≥ 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA)P = (Q,Σ,Γ, δ, s, A) is a six
tuple where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• Γ is a �nite set called the stack alphabet

• δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → P(Q × (Γ ∪ {ε})) is the transition
function

• s is the start state

• A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
〈input read〉, 〈stack pop〉 → 〈stack push〉.

A CFG can be converted to a pushdown automaton.

The PDA to the right recog-
nizes the language described
by the following grammar:

S → 0S|1|ε

qsstart

q2

ql

qa

qp21

ε, ε→ $

ε, ε→ S

ε, S → 1
ε, S → ε
0, 0→ ε
1, 1→ ε

ε, $→ ε

ε, S → S

ε, ε→ 0

Context-free closure
Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.

5 Recursively enumerable languages

Turing Machines

Turing machine is the simplest model
of computation.
• Input written on (in�nite) one sided
tape.

• Special blank characters.
• Finite state control (similar to DFA).
• Ever step: Read character under
head, write character out, move the
head right or left (or stay).

• Every TM M can be encoded as a
string 〈M〉

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading andWriting Head
(moves in both directions)

Transition Function: δ : Q× Γ→ Q× Γ× {←,→,�}

δ(q, c) = (p, d,←)

• q: current state.
• c: character under tape head.
• p: new state.
• d: character to write under tape
head

• ←: Move tape head left.

q pc/d, L

6 Recursion

Simple recursion

De�nitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the �rst peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi (n, src, dest, tmp):
if (n > 0) then

Hanoi (n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n
k=1 k =

n(n+1)
2

• Geometric series closed-form formula:
∑n
k=0 ar

k = 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1).

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequenceB ofA do

ifB is increasing and |B| > max then
max = |B|

returnmax

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
ifA[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
returnmax

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx+ bR)(cLx+ cR) = (bLcL)x
2

+ ((bL + bR)(cL + cR)− bLcL − bRcR) x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to �nd element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i):
sublists = [A[j:j+5] for j← 0, 5, . . . , len(A)]
medians = [sorted (sublist)[len (sublist)/2]

for sublist ∈ sublists]

// Base case
if len (A)≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians)≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot =Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
else if i > k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =


0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n

if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do

if A[i] ≥ A[j]
LIS[i, j] = LIS[i− 1, j]

else
LIS[i, j] = max

{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min


αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 tom doM [i, 0] = iδ
for j ← 1 to n doM [0, j] = jδ

for i = 1 tom do
for j = 1 to n do

M [i][j] = min


COST

[
A[i]

][
B[j]

]
+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

7 Graph algorithms

Graph basics

A graph is de�ned by a tuple G = (V,E) and we typically de�ne n = |V | andm = |E|. We de�ne (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this de�nition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algorithm

Kahn(G(V,E),u):
toposort←empty list
for v ∈ V :

in(v)← |{u | u→ v ∈ E}|
while v ∈ V that has in(v) = 0:

Add v to end of toposort
Remove v from V
for v in u→ v ∈ E:

in(v)← in(v)− 1
return toposort

Running time: O(n+m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

Strongly connected components

• Given G, u is strongly
connected to v if v ∈
rch(u) and u ∈ rch(v).

• A maximal group of
vertices that are all
strongly connected to
one nother is called a
strong component.

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Metagraph - linear time

Metagraph(G(V,E)):
Compute rev(G) by brute force
ordering← reverse postordering of V in rev(G)

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each u in ordering do

if u is not visited and u ∈ V then
Su ← nodes reachable by u by DFS(G, u)
Output Su as a strong connected component
G(V,E)← G− Su

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
for i← 1 to n:

Visited[i]← False
Add u to ToExplore and to S
Visited[u]← True
Make tree T with root as u
while B is non-empty do

Remove node x from B
for each edge (x, y) inAdj(x) do

if Visited[y] = False
Visited[y]← True
Add y to B, S, T (with x as parent)

Note:

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Minimum Spanning Tress

Some notes on minimum spanning trees:

• Tree = undirected graph in which any two vertices are connected by ex-
actly one path.

• Tree = a connected graph with no cycles.

• Sub-graph H of G is spanning for G, if G and H have same connected
components.

• A minimum spanning tree is composed of all the safe edges in the graph

• An edge e = (u, v) is a safe edge if there is some partition of V into S
and V \ S and e is the unique minimum cost edge crossing S (one end in
S and the other in V \ S).

• An edge e = (u, v) is an unsafe edge if there is some cycleC such that e
is the unique maximum cost edge in C .

• All edges are safe or unsafe.

Pseudocode: Boruvka’s algorithm:O(mlog(n))

T is∅ (* T will store edges of a MST *)
while T is not spanning do
X ← ∅
for each connected component S of T do

add toX the cheapest edge between S and V \ S
Add edges inX to T

return the set T

Pseudocode: Kruskal’s algorithm: (m + n)log(m) (using Union-Find structure)

Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do

pick e = (u, v) ∈ E of minimum cost
if u and v belong to di�erent sets

add e to T
merge the sets containing u and v

return the set T

Pseudocode: Prim’s algorithm: (n)log(n) +m (using Priority Queue)

T ← ∅, S ← ∅, s← 1
∀v ∈ V (G) : d(v)←∞, p(v)← ∅
d(s)← 0
while S 6= V do
v = arg minu∈V \S d(u)
T = T ∪ {vp(v)}
S = S ∪ {v}
for each u inAdj(v) do

d(u)← min

{
d(u)

c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

for v ∈ V do
d(v)←∞

X ← ∅
d(s, s)← 0
for i← 1 to n do
v ← arg minu∈V−X d(u)
X = X ∪ {v}
for u in Adj(v) do
d(u)← min {(d(u), d(v) + `(v, u))}

return d

Running time:O(m+nlogn) (if using a Fibonacci heap as thepriority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) =


0 if v = s and k = 0

∞ if v 6= s and k = 0

min

{
minuv∈E {d(u, k − 1) + `(u, v)}
d(v, k − 1)

else

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v 6= s.
Pseudocode: Bellman-Ford

for each v ∈ V do
d(v)←∞

d(s)← 0

for k ← 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v)← min{d(v), d(u) + `(u, v)}

return d

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

d(i, j, k) =


0 if i = j

∞ if (i, j) /∈ E and k = 0

min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)
else

Then d(i, j, n − 1) will give the shortest-path distance from i to j .
Pseudocode: Floyd-Warshall

Metagraph(G(V,E)):
for i ∈ V do

for j ∈ V do
d(i, j, 0)← `(i, j)

(* `(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 0 to n− 1 do
for i ∈ V do

for j ∈ V do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for v ∈ V do
if d(i, i, n− 1) < 0 then

return "∃ negative cycle inG"

return d(·, ·, n− 1)

Running time: Θ(n3)

Complexity Classes

Computational Complexity Classes

Context-Sensitive

Context-Free

Regular

Decidable
(Recursive)

Semi-Decidable
(recursively-enumerable, recognizable,

Turing-acceptable/recognizable, partially-decidable)

Turing-unrecognizable
(everything outside of the complexity classes below)

Algorithmic Complexity Classes (assuming P 6= NP)

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

NPC

Reductions
A general methodology to prove impossibility results.

• Start with some known hard problemX

• ReduceX to your favorite problem Y

If Y can be solved then so canX =⇒ Y . But we knowX is hard so Y has
to be hard too. On the other hand if we know Y is easy, then X has to be
easy too.

The Karp reduction, X ≤P Y suggests that there is a polynomial time re-
duction fromX to Y .

AY

IY
YES

NO

IX
R

AX

Assuming

• R(n): running time ofR

• Q(n): running time ofAY

Running time ofAX isO(Q(R(n))

Sample NP-complete problems

CIRCUITSAT: Given a boolean circuit, are there any input values that
make the circuit output True?

3SAT: Given a boolean formula in conjunctive normal form,
with exactly three distinct literals per clause, does the
formula have a satisfying assignment?

INDEPENDENTSET: Given an undirected graphG and integer k, what is there
a subset of vertices≥ k inG that have no edges among
them?

CLIQUE: Given an undirected graph G and integer k, is there a
complete complete subgraph ofGwithmore than k ver-
tices?

KPARTITION: Given a set X of kn positive integers and an integer k,
canX be partitioned into n, k-element subsets, all with
the same sum?

3COLOR: Given an undirected graphG, can its vertices be colored
with three colors, so that every edge touches vertices
with two di�erent colors?

HAMILTONIANPATH: Given graph G (either directed or undirected), is there a
path inG that visits every vertex exactly once?

HAMILTONIANCYCLE: Given a graph G (either directed or undirected), is there
a cycle inG that visits every vertex exactly once?

LONGESTPATH: Given a graphG (either directed or undirected, possibly
with weighted edges) and an integer k, does G have a
path≥ k length?

• Remember a path is a sequence of distinct vertices [v1, v2, . . . vk] such that an edge exists be-
tween any two vertices in the sequence. A cycle is the same with the addition of a edge (vk, v1) ∈
E. A walk is a path except the vertices can be repeated.

• A formula is in conjunction normal form if variables are or’ed together inside a clause and then clauses
are and’ed together: ((x1 ∨x2 ∨x3)∧ (x2 ∨x4 ∨x5)). Disjunctive normal form is the opposite
((x1 ∧ x2 ∧ x3) ∨ (x2 ∧ x4 ∧ x5)).

Sample undecidable problems

ACCEPTONINPUT: ATM =
{
〈M,w〉

∣∣M is a TM andM accepts on w
}

HALTSONINPUT: HaltTM =
{
〈M,w〉

∣∣M is a TM and halts on input w
}

HALTONBLANK: HaltBTM =
{
〈M〉

∣∣M is a TM &M halts on blank input
}

EMPTINESS: ETM =
{
〈M〉

∣∣M is a TM and L(M) = ∅
}

EQUALITY: EQTM =

{
〈MA,MB〉

∣∣∣∣ MA andMB are TM’s
and L(MA) = L(MB)

}

	Languages and strings
	Overview of language complexity
	Regular languages
	Context-free languages
	Recursively enumerable languages
	Recursion
	Graph algorithms

