ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

- An alphabet Σ is a finite set of symbols.

Definitions. A string in Σ^{*} is a finite sequence of symbols in Σ.

- A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

$$
L_{M U L T 2}=\left\{\begin{array}{ccc}
1 \times 1 \mid 1, & 1 \times 2 \mid 2, & 1 \times 3 \mid 3, \ldots \tag{1}\\
2 \times 1 \mid 2, & 2 \times 2 \mid 4, & 2 \times 3 \mid 6, \ldots \\
\vdots & \vdots & \vdots \\
n \times 1 \mid n, & n \times 2 \mid 2 n, & n \times 3 \mid 3 n, \ldots
\end{array}\right\}
$$

For languages A, B the concatenation of A, B is $A B=$ $\{x y \mid x \in A, y \in B\}$.

- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \backslash B$ (also written as $A-B$).
Language operations

For language $A \subseteq \Sigma^{*}$ the complement of A is $\bar{A}=\Sigma^{*} \backslash A$. Σ^{n} is the set of all strings of length n.

- $\Sigma^{*}=\cup_{n \geq 0} \Sigma^{n}$ is the set of all strings over Σ.
- $\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}$ is the set of non-empty strings over Σ.

Strings

- The length of a string w (denoted by $|w|$) is the number of symbols in w.
- For integer $n \geq 0, \Sigma^{n}$ is set of all strings over Σ of length n

Definitions Σ^{*} is the set of all strings over Σ.

- Σ^{*} is the set of all strings of all lengths including empty string
- ε is a string containing no symbols.
- \varnothing is the empty set. It contains no strings.
- If x and y are strings then $x y$ denotes their concatenation. Recursively:
- $x y=y$ if $x=\varepsilon$
- $x y=a(w y)$ if $x=a w$
- v is substring of $w \Longleftrightarrow$ there exist strings x, y such that $w=x v y$.
- If $x=\varepsilon$ then v is a prefix of w
- If $y=\varepsilon$ then v is a suffix of w
- A subsequence of a string $w=w_{1} w_{2} \ldots w_{n}$ is either a subsequence of $w_{2} \ldots w_{n}$ or w_{1} followed by a subsequence of $w_{2} \ldots w_{n}$.
- If w is a string then w^{n} is defined inductively as follows: $w^{n}=\varepsilon$ if $n=0$ or $w^{n}=w w^{n-1}$ if $n>0$

2 Overview of language complexity

Overview

Grammar	Languages	Production Rules	Automaton	Examples

Meaning of symbols:

- a - terminal
- A, B - variables
- α, β, γ - strings in $\{a \cup A\}^{*}$ where α, β are maybe empty, γ is never empty

[^0]
3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

- union,
- concatenation or
- Kleene star
finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- \varnothing the language \varnothing
- ε denotes the language $\{\varepsilon\}$
- a denote the language $\{a\}$

Inductive cases: If \mathbf{r}_{1} and \mathbf{r}_{2} are regular expressions denoting languages L_{1} and L_{2} respectively (i.e., $L\left(\mathbf{r}_{1}\right)=L_{1}$ and $L\left(\mathbf{r}_{2}\right)=L_{2}$) then.

- $\mathbf{r}_{1}+\mathbf{r}_{2}$ denotes the language $L_{1} \cup L_{2}$
- $\mathbf{r}_{1} \cdot \mathbf{r}_{\mathbf{2}}$ denotes the language $L_{1} L_{2}$
- \mathbf{r}_{1}^{*} denotes the language L_{1}^{*}

Examples:

- 0^{*} - the set of all strings of 0 s , including the empty string
- $(00000)^{*}$ - set of all strings of 0 s with length a multiple of 5
- $(0+1)^{*}$ - set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w

The language accepted (or recognized) by an NFA N is denoted $L(N)$ and defined as $L(N)=\{w \mid N$ accepts $w\}$.

A nondeterministic finite automaton (NFA) $N=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)
- s and Σ are the same as in DFAs

Example:

$$
\begin{aligned}
& \text { - } Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \text { - } \Sigma=\{0,1\}
\end{aligned}
$$

	ε	0	1
q_{0}	\{q0 \}	\{q0 \}	$\left\{q_{0}, q_{1}\right\}$
(3) δ : q_{1}	$\left\{q_{1}, q_{2}\right\}$	$\left\{q_{2}\right\}$	\varnothing
q_{2}	$\left\{q_{2}\right\}$	\varnothing	$\left\{q_{3}\right\}$
q_{3}	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$
$s=q_{0}$			
- $A=\left\{q_{3}\right.$			

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$, the ε-reach (q) is the set of all states that q can reach using only ε-transitions.
Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\varepsilon$-reach (q)
- if $w=a$ for $a \in \Sigma, \quad \delta^{*}(q, a)=\varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon-\text { reach }(q)} \delta(p, a)\right)$
- if $w=a x$ for $a \in \Sigma, x \in \Sigma^{*}: \delta^{*}(q, w)=$ $\varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon \text {-reach }(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$

Regular closure

Regular languages are closed under union, intersection, complement, difference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by $L(M)$ and defined as $L(M)=\{w \mid M$ accepts $w\}$.

A deterministic finite automaton (DFA) $M=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $s \in Q$ is the start state
- $A \subseteq Q$ is the set of accepting/final states

Example:

$$
\cdot Q=\left\{q_{0}, q_{1}\right\}
$$

- $\Sigma=\{0,1\}$
- $\delta:$| | 0 | 1 |
| :--- | :--- | :--- |
| q_{0} | q_{1} | q_{0} |
| q_{1} | q_{0} | q_{1} |
- $s=q_{0}$
- $A=\left\{q_{0}\right\}$

Every string has a unique walk along a DFA. We define the extended transition function as $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows

- $\delta^{*}(q, w)=q$ if $w=\varepsilon$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Can create a larger DFA from multiple smaller DFAs. Suppose

- $L\left(M_{0}\right)=\{w$ has an even number of 0 s $\}$ (pictured above) and
- $L\left(M_{1}\right)=\{w$ has an even number of 1 s$\}$.
$L\left(M_{C}\right)=\{w$ has even number of 0 s and 1 s$\}$

Suppose $M_{0}=\left(Q_{0}, \Sigma, s_{0}, A_{0}, \delta_{0}\right)$ and $M_{1}=\left(Q_{1}, \Sigma, s_{1}, A_{1}, \delta_{1}\right)$. Then

- $\underset{Q_{1}}{Q=} Q_{0} \times Q_{1}=\left\{\left(q_{0}, q_{1}\right) \mid q_{0} \in Q_{0}, q_{1} \in\right.$ $\left.Q_{1}\right\}$
- $s=\left(s_{0}, s_{1}\right)$
- $\delta: Q \times \Sigma \rightarrow Q$, where $\delta\left(\left(q_{0}, q_{1}\right), a\right)=$ $\left(\delta_{0}\left(q_{0}, a\right), \delta_{1}\left(q_{1}, a\right)\right)$
- $A=\left\{\left(q_{0}, q_{1}\right) \mid q_{0} \in A_{0}\right.$ and $\left.q_{1} \in A_{1}\right\}$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.

Arden's rule: If $R=Q+R P$ then $R=Q P^{*}$

Fooling sets

Some languages are not regular (Ex. $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$).
Two states $p, q \in Q$ are distinguish-
able if there exists a string $w \in \Sigma^{*}$ such that

$$
\delta^{*}(p, w) \in A \text { and } \delta^{*}(q, w) \notin A .
$$

or $\quad \delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A$
$\delta^{*}(p, w) \notin A$ and $\delta^{*}(q, w) \in A$.
For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

4 Context－free languages

Context－free languages

A language is context－free if it can be generated by a context－free grammar A context－free grammar is a quadruple $G=(V, T, P, S)$
－V is a finite set of nonterminal（variable）symbols
－T is a finite set of terminal symbols（alphabet）
－P is a finite set of productions，each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^{*}$ Formally，$P \subseteq V \times(V \cup T)^{*}$
－$S \in V$ is the start symbol
Example：$L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$ is described by $G=(V, T, P, S)$ where V, T, P and S are defined as follows：
－$V=\{S\}$
－$T=\{0,1\}$
－$P=\{S \rightarrow \varepsilon|0 S 0| 1 S 1\}$
（abbreviation for $S \rightarrow \varepsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$ ）
－$S=S$

Pushdown automata

A pushdown automaton is an NFA with a stack．
The language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is recognized by the pushdown au－ tomaton：

A nondeterministic pushdown automaton（PDA）$P=(Q, \Sigma, \Gamma, \delta, s, A)$ is a six tuple where
－Q is a finite set whose elements are called states
－Σ is a finite set called the input alphabet
－Γ is a finite set called the stack alphabet
－$\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is the transition function
－s is the start state
－A is the set of accepting states
In the graphical representation of a PDA，transitions are typically written as〈input read〉，〈stack pop〉 \rightarrow 〈stack push〉．

A CFG can be converted

The PDA to the right recog－ nizes the language described by the following grammar：
$S \rightarrow 0 S|1| \varepsilon$

Context－free closure

Context－free languages are closed under union，concatenation，and Kleene star．

They are not closed under intersection or complement．

[^0]: ${ }^{a}$ Table borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

