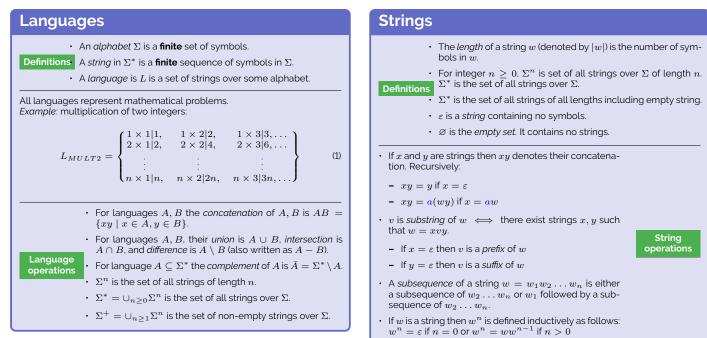
ECE 374 B Language Theory: Cheatsheet

1 Languages and strings



2 Overview of language complexity

Overview				
recursively enumerable context-sensitive context-free regular				
		(regu	ılar)	
Grammar	Languages	Production Rules	Automaton	Examples
Grammar Type-0	Languages			Examples $L = \{w w \text{ is a } TM \text{ which halts} \}$
		Production Rules $\gamma \rightarrow \alpha$	Automaton	•
Туре-О	recursively enumerable	Production Rules $\gamma \rightarrow \alpha$ (no constraints)	Automaton Turing machine linear bounded nondeterministic	$L = \{w w \text{ is a } TM \text{ which halts}\}$

Meaning of symbols:

 $\cdot a$ - terminal

а

• A, B - variables

• α, β, γ - strings in $\{a \cup A\}^*$ where α, β are maybe empty, γ is never empty

^aTable borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

union,

- · concatenation or
- Kleene star

finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.

A regular expression \mathbf{r} over an alphabet Σ is one of the following: Base cases:

- ε denotes the language { ε }
- a denote the language $\{a\}$

Inductive cases: If $\mathbf{r_1}$ and $\mathbf{r_2}$ are regular expressions denoting languages L_1 and L_2 respectively (i.e., $L(\mathbf{r_1}) = L_1$ and $L(\mathbf{r_2}) = L_2$) then,

- + $\mathbf{r_1} + \mathbf{r_2}$ denotes the language $L_1 \cup L_2$
- + $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes the language $L_1 L_2$
- $\mathbf{r_1^*}$ denotes the language L_1^*

Examples:

- + 0^* the set of all strings of 0s, including the empty string
- $(00000)^*$ set of all strings of 0s with length a multiple of 5
- $(0+1)^*$ set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA $N\ accepts\ a\ string\ w$ iff some accepting state is reached by $N\ from$ the start state on input w.

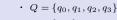
The language accepted (or recognized) by an NFA N is denoted L(N) and defined as $L(N)=\{w\mid N \text{ accepts } w\}.$

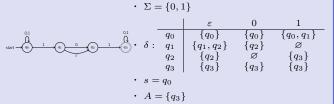
A nondeterministic finite automaton (NFA) $N=(Q,\Sigma,s,A,\delta)$ is a five tuple where

- $\cdot \, Q$ is a finite set whose elements are called *states*
- + Σ is a finite set called the *input alphabet*
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)

+ $\,s$ and Σ are the same as in DFAs

Example:





For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$, the ε -reach(q) is the set of all states that q can reach using only ε -transitions. Inductive definition of $\delta^* : Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \varepsilon$ -reach (q)

• if
$$w = a$$
 for $a \in \Sigma$, $\delta^*(q, a) = \varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon \operatorname{-reach}(q)} \delta(p, a)\right)$

 $\begin{array}{lll} \cdot \mbox{ if } w &= ax \mbox{ for } a \in \Sigma, x \in \Sigma^*: \ \delta^*(q,w) = \\ \varepsilon \mbox{ reach} \Big(\bigcup_{p \in \varepsilon \mbox{ -reach}(q)} \Big(\bigcup_{r \in \delta^*(p,a)} \delta^*(r,x) \Big) \Big) \end{array}$

Regular closure

Regular languages are closed under union, intersection, complement, difference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata

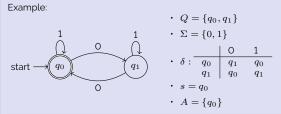
DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The *language accepted* (or recognized) by a DFA M is denoted by L(M) and defined as $L(M) = \{w \mid M \text{ accepts } w\}.$

A deterministic finite automaton (DFA) $M = (Q, \Sigma, s, A, \delta)$ is a five tuple where

- + Q is a finite set whose elements are called *states*
- + Σ is a finite set called the *input alphabet*
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $s \in Q$ is the start state

• $A \subseteq Q$ is the set of *accepting/final* states



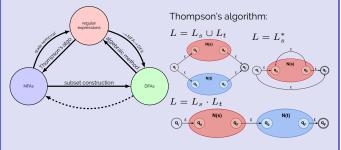
Every string has a unique walk along a DFA. We define the extended transition function as $\delta^*:Q\times\Sigma^*\to Q$ defined inductively as follows:

- $$\begin{split} \cdot \ \ \delta^*(q,w) &= q \text{ if } w = \varepsilon \\ \cdot \ \ \delta^*(q,w) &= \delta^*(\delta(q,a),x) \text{ if } w = ax. \end{split}$$
- Can create a larger DFA from multiple smaller DFAs. Suppose
- $L(M_0) = \{w \text{ has an even number of } 0s\}$ (pictured above) and
- $L(M_1) = \{w \text{ has an even number of } 1s\}.$
- $L(M_C) = \{w \text{ has even number of } 0 \text{ s and } 1 \text{ s} \}$

$$\begin{array}{c} \text{Suppose } M_0 = (Q_0, \Sigma, s_0, A_0, \delta_0) \text{ and} \\ \text{start} \rightarrow \begin{pmatrix} q_{(0,0)} \\ 0 \\ 0 \\ q_{(1,0)} \\ 0 \\ q_{(1,1)} \\ q_{(0,1)} \\ q_{(0,1)} \\ 0 \\ q_{(1,1)} \\ q_$$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.



Arden's rule: If R = Q + RP then $R = QP^*$.

Fooling sets

or

Some languages are not regular (Ex. $L = \{0^n 1^n \mid n \ge 0\}$).

Two states $p,q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

 $\begin{array}{ll} \text{uch that} & \text{Two states } p,q \in Q \text{ are } equivalent \text{ if} \\ \text{for all strings } w \in \Sigma^* \text{, we have that} \\ \delta^*(p,w) \in A \text{ and } \delta^*(q,w) \notin A. \end{array}$

 $\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$

 $\delta^*(p, w) \notin A \text{ and } \delta^*(q, w) \in A.$

For a language L over Σ a set of strings F (could be infinite) is a *fooling set* or *distinguishing set* for L if every two distinct strings $x, y \in F$ are distinguishable.

4 Context-free languages

Context-free languages

- A language is context-free if it can be generated by a context-free grammar. A context-free grammar is a quadruple G=(V,T,P,S)
- V is a finite set of nonterminal (variable) symbols
- T is a finite set of terminal symbols (alphabet)
- P is a finite set of *productions*, each of the form $A \to \alpha$ where $A \in V$ and α is a string in $(V \cup T)^*$ Formally, $P \subseteq V \times (V \cup T)^*$. • $S \in V$ is the start symbol

Example: $L = \{ww^R | w \in \{0, 1\}^*\}$ is described by G = (V, T, P, S) where V, T, P and S are defined as follows:

- $V = \{S\}$
- $T = \{0, 1\}$
- $P = \{S \rightarrow \varepsilon \mid 0S0 \mid 1S1\}$ (abbreviation for $S \rightarrow \varepsilon, S \rightarrow 0S0, S \rightarrow 1S1$)
- $\cdot S = S$

Pushdown automata

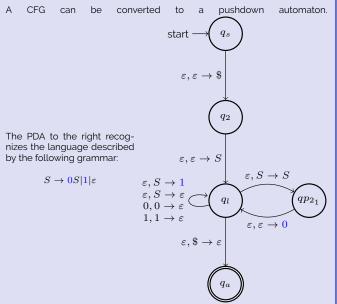
A pushdown automaton is an NFA with a stack.

The language $L = \{0^n 1^n \mid n \ge 0\}$ is recognized by the pushdown automaton:

A nondeterministic pushdown automaton (PDA) $P = (Q, \Sigma, \Gamma, \delta, s, A)$ is a **six** tuple where

- Q is a finite set whose elements are called *states*
- Σ is a finite set called the *input alphabet*
- Γ is a finite set called the *stack alphabet*
- $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\}))$ is the transition function
- s is the start state
- A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as $\langle \text{input read} \rangle, \langle \text{stack pop} \rangle \rightarrow \langle \text{stack push} \rangle.$



Context-free closure

Context-free languages are closed under union, concatenation, and Kleene star

They are **not** closed under intersection or complement.