ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a smaller instance of itself (self-reduction).

- **Definitions** Problem instance of size n is reduced to *one or more* instances of size n 1 or less.
 - For termination, problem instances of small size are solved by some other method as *base cases*

Arguably the most famous example of recursion. The goal is to move n disks one at a time from the first peg to the last peg.

Recurrences

Suppose you have a recurrence of the form T(n) = rT(n/c) + f(n).

The *master theorem* gives a good asymptotic estimate of the recurrence. If the work at each level is:

 $\begin{array}{ll} \text{Decreasing: } rf(n/c) = \kappa f(n) \text{ where } \kappa < 1 & T(n) = O(f(n)) \\ \text{Equal: } & rf(n/c) = f(n) & T(n) = O(f(n) \cdot \log_c n) \\ \text{Increasing: } & rf(n/c) = Kf(n) \text{ where } K > 1 & T(n) = O(n^{\log_c r}) \\ \end{array}$

Some useful identities:

• Sum of integers: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

- Geometric series closed-form formula: $\sum_{k=0}^{n} ar^k = \frac{1-r^{n+1}}{1-r}$
- Logarithmic identities: $\log(ab) = \log a + \log b, \log(a/b) = \log a \log b, a^{\log_c b} = b^{\log_c a} (a, b, c > 1).$

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a single step in some multi-step process and recursing backwards if it doesn't lead to a solution. For instance, consider the longest increasing subsequence (LIS) problem. You can either check all possible subsequences:

```
algLISNaive(A[1..n]):

maxmax = 0

for each subsequence B of A do

if B is increasing and |B| > \max then

max = |B|

return max
```

On the other hand, we don't need to generate every subsequence; we only need to generate the subsequences that are increasing:

```
 \begin{array}{l} \textbf{LIS\_smaller}(A[1..n], x):\\ \textbf{if } n = 0 \textbf{ then return } 0\\ max = \textbf{LIS\_smaller}(A[1..n-1], x)\\ \textbf{if } A[n] < x \textbf{ then}\\ max = max \{max, 1 + \textbf{LIS\_smaller}(A[1..(n-1)], A[n])\}\\ \textbf{return } max \end{array}
```

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition of a problem into the same subproblem, solving them separately and combining their results to get a solution for the original problem.

	Algorithm	Runtime	Space
Sorting algo-	Mergesort	$O(n \log n)$	$O(n \log n)$ O(n) (if optimized)
rithms	Quicksort	$O(n^2)$ $O(n \log n)$ if using MoM	O(n)

Karatsuba's

algorithm

We can divide and conquer multiplication like so:

```
bc = 10^{n} b_{L} c_{L} + 10^{n/2} (b_{L} c_{R} + b_{R} c_{L}) + b_{R} c_{R}.
```

We can rewrite the equation as:

$$bc = b(x)c(x) = (b_L x + b_R)(c_L x + c_R) = (b_L c_L)x^2 + ((b_L + b_R)(c_L + c_R) - b_L c_L - b_R c_R)x + b_R c_R,$$

Its running time is $O(n^{\log_2 3}) = O(n^{1.585})$.

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than $\frac{3}{10}$'s and smaller than $\frac{7}{10}$'s of the array elements. This is used in the linear time selection algorithm to find element of rank k.

```
Median-of-medians (A, i):
    sublists = [A[iji+5] for j ← 0, 5, ..., len(A)]
    medians = [sorted (sublist)[len (sublist)/2]
    for sublist ∈ sublists]

// Base case
if len (A) ≤ 5 return sorted (a)[i]

// Find median of medians
```

if len (medians) ≤ 5
 pivot = sorted (medians)[len (medians)/2]
else
 pivot = Median-of-medians (medians, len/2)

/ Partitioning step

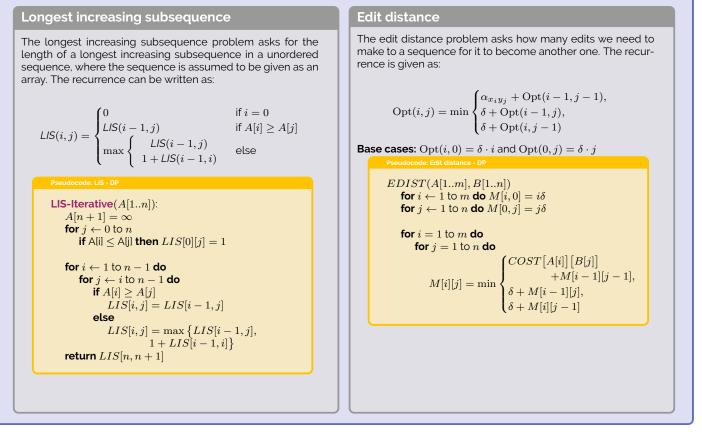
```
// Partitioning step
low = [j for j \in A if j < pivot]
high = [j for j \in A if j > pivot]
```

k = **len** (low) **if** i < k

```
return Median-of-medians (low, i)
else if i > k
return Median-of-medians (low, i-k-1)
else
return pivot
```

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of any particular subproblem.



2 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V, E) and we typically define n = |V| and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented as **adjacency lists**, or **adjacency matrices** though the former is more commonly used.

- path: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $v_i v_{i+1} \in E$ for $1 \le i \le k-1$. The length of the path is k-1 (the number of edges in the path). Note: a single vertex u is a path of length 0.
- cycle: sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \leq i \leq k-1$ and $(v_k, v_1) \in E$. A single vertex is not a cycle according to this definition.

Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

- A vertex u is *connected* to v if there is a path from u to v.
- The connected component of u, con(u), is the set of all vertices connected to u.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that enables dynamic programming algorithms to be used on them. A *topological ordering* of a dag G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

 $\begin{array}{l} \textbf{Kahn}(G(V,E),u):\\ \text{toposort}\leftarrow\text{empty list}\\ \textbf{for } v\in V:\\ \text{in}(v)\leftarrow |\{u\mid u\rightarrow v\in E\}|\\ \textbf{while } v\in V \text{ that has in}(v)=0:\\ \text{Add } v \text{ to end of toposort}\\ \text{Remove } v \text{ from } V\\ \textbf{for } v \text{ in } u\rightarrow v\in E:\\ \text{in}(v)\leftarrow \text{in}(v)-1\\ \textbf{return toposort} \end{array}$

Running time: O(n+m)

- A dag may have multiple topological sorts.
- A topological sort can be computed by DFS, in particular by listing the vertices in decreasing post-visit order.

DFS and BFS

Pseudocode: Explore (DFS/BFS)

$$\begin{split} \textbf{Explore}(G,u): \\ \textbf{for } i \leftarrow 1 \text{ to } n: \\ & \text{Visited}[i] \leftarrow \text{False} \\ & \text{Add } u \text{ to ToExplore and to } S \\ & \text{Visited}[u] \leftarrow \text{True} \\ & \text{Make tree } T \text{ with root as } u \\ \textbf{while } B \text{ is non-empty } \textbf{do} \\ & \text{Remove node } x \text{ from } B \\ & \textbf{for each edge } (x, y) \text{ in } Adj(x) \textbf{do} \\ & \text{ if Visited}[y] = \text{False} \\ & \text{Visited}[y] \leftarrow \text{True} \\ & \text{Add } y \text{ to } B, S, T \text{ (with } x \text{ as parent)} \end{split}$$

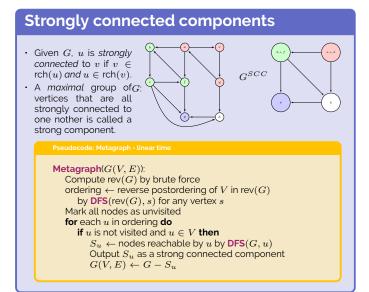
Note:

Pre/post

bering

- If B is a queue, *Explore* becomes BFS.
- If B is a stack, *Explore* becomes DFS.

Pre and post numbering aids in analyzing the graph structure. By looking at the numbering we can tell if a edge (u, v) is a:
Forward edge: pre(u) < pre(v) < post(v) < post(u)
Backward edge: pre(v) < pre(u) < post(u) < post(v)
Cross edge: pre(u) < post(u) < pre(v) < post(v)



Shortest paths

Dijkstra's algorithm:

Find minimum distance from vertex s to **all** other vertices in graphs without negative weight edges.

 $\begin{array}{l} \mbox{for } v \in V \ \mbox{do} \\ d(v) \leftarrow \infty \\ X \leftarrow \varnothing \\ d(s,s) \leftarrow 0 \\ \mbox{for } i \leftarrow 1 \ \mbox{to } n \ \mbox{do} \\ v \leftarrow \arg\min_{u \in V - X} d(u) \\ X = X \cup \{v\} \\ \mbox{for } u \ \mbox{in Adj}(v) \ \mbox{do} \\ d(u) \leftarrow \min \left\{ (d(u), \ d(v) + \ell(v, u)) \right\} \\ \mbox{return } d \end{array}$

Running time: $O(m+n\log n)$ (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm:

Find minimum distance from vertex s to **all** other vertices in graphs without negative cycles. It is a DP algorithm with the following recurrence:

$$d(v,k) = \begin{cases} 0 & \text{if } v = s \text{ and } k = 0 \\ \infty & \text{if } v \neq s \text{ and } k = 0 \\ \min \begin{cases} \min_{uv \in E} \{d(u,k-1) + \ell(u,v)\} \\ d(v,k-1) & \text{else} \end{cases}$$

Base cases: d(s, 0) = 0 and $d(v, 0) = \infty$ for all $v \neq s$.

for each $v \in V$ do $d(v) \leftarrow \infty$ $d(s) \leftarrow 0$ for $k \leftarrow 1$ to n - 1 do for each $v \in V$ do

 $\begin{array}{l} \text{for each } v \in V \text{ do} \\ \text{for each edge } (u,v) \in \text{in}(v) \text{ do} \\ d(v) \leftarrow \min\{d(v), d(u) + \ell(u,v)\} \end{array}$

return d

Running time: O(nm)

Floyd-Warshall algorithm:

Find minimum distance from *every* vertex to *every* vertex in a graph *without* negative cycles. It is a DP algorithm with the following recurrence:

$$d(i, j, k) = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } (i, j) \notin E \text{ and } k = 0 \\ \min \begin{cases} d(i, j, k-1) \\ d(i, k, k-1) + d(k, j, k-1) \end{cases} \text{ else} \end{cases}$$

Then d(i, j, n - 1) will give the shortest-path distance from i to j.

$$\begin{split} & \text{Metagraph}(G(V,E)): \\ & \text{for } i \in V \text{ do} \\ & \text{for } j \in V \text{ do} \\ & d(i,j,0) \leftarrow \ell(i,j) \\ & (* \ \ell(i,j) \leftarrow \infty \ \text{if } (i,j) \notin E, \ 0 \ \text{if } i = j \ *) \end{split} \\ & \text{for } k \leftarrow 0 \ \text{to } n - 1 \ \text{do} \\ & \text{for } i \in V \ \text{do} \\ & \text{for } j \in V \ \text{do} \\ & d(i,j,k) \leftarrow \min \begin{cases} d(i,j,k-1), \\ d(i,k,k-1) + d(k,j,k-1) \end{cases} \\ & \text{for } v \in V \ \text{do} \\ & \text{if } d(i,i,n-1) < 0 \ \text{then} \\ & \text{return } \exists \text{ negative cycle in } G^* \end{cases} \end{split}$$

Running time: $\Theta(n^3)$