ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

```
Reduction: solve one problem using the solution to another.
Recursion: a special case of reduction - reduce problem to a smaller instance of itself (self-reduction).
Definitions
- Problem instance of size \(n\) is reduced to one or more instances of size \(n-1\) or less.
- For termination, problem instances of small size are solved by some other method as base cases
```

Arguably the most famous example of recursion. The goal is to move n disks one at a time from the first peg to the last peg.

Pseudocode: Tower of Hanoi
Hanoi (n, src, dest, tmp):
if ($n>0$) then
Hanoi ($n-1$, src, tmp, dest)
Move disk n from src to dest
Hanoi ($n-1$, tmp, dest, src)

Recurrences

Suppose you have a recurrence of the form $T(n)=r T(n / c)+f(n)$.
The master theorem gives a good asymptotic estimate of the recurrence. If the work at each level is:

$$
\begin{array}{lll}
\text { Decreasing: } & r f(n / c)=\kappa f(n) \text { where } \kappa<1 & T(n)=O(f(n)) \\
\text { Equal: } & r f(n / c)=f(n) & T(n)=O\left(f(n) \cdot \log _{c} n\right) \\
\text { Increasing: } & r f(n / c)=K f(n) \text { where } K>1 & T(n)=O\left(n^{\log _{c} r}\right)
\end{array}
$$

Some useful identities:

- Sum of integers: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
- Geometric series closed-form formula: $\sum_{k=0}^{n} a r^{k}=\frac{1-r^{n+1}}{1-r}$
- Logarithmic identities: $\log (a b)=\log a+\log b, \log (a / b)=\log a-$ $\log b, a^{\log _{c} b}=b^{\log _{c} a}(a, b, c>1)$.

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a single step in some multi-step process and recursing backwards if it doesn't lead to a solution. For instance, consider the longest increasing subsequence (LIS) problem. You can either check all possible subsequences

Pseudocode: LIS - Naive enumeration

```
algLISNaive(A[1..n]):
```

 \(\operatorname{maxmax}=0\)
 for each subsequence \(B\) of \(A\) do
 if \(B\) is increasing and \(|B|>\max\) then
 \(\max =|B|\)
 return max
 On the other hand, we don't need to generate every subsequence; we only need to generate the subsequences that are increasing

Pseudocode: LIS - Backtracking
LIS_smaller $(A[1 . . n], x)$:
if $n=0$ then return 0
$\max =$ LIS_smaller $(A[1 . . n-1], x)$
if $A[n]<x$ then
$\max =\max \{\max , 1+$ LIS_smaller $(A[1 . .(n-1)], A[n])\}$
return max

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition of a problem into the same subproblem, solving them separately and combining their results to get a solution for the original problem

	Algorithm	Runtime	Space
Sorting algo- rithms	Mergesort	$O(n \log n)$	$O(n \log n)$ $O(n)$ (if optimized)
	Quicksort	$O\left(n^{2}\right)$ $O(n \log n)$ if using MoM	$O(n)$

We can divide and conquer multiplication like so:

$$
b c=10^{n} b_{L} c_{L}+10^{n / 2}\left(b_{L} c_{R}+b_{R} c_{L}\right)+b_{R} c_{R}
$$

We can rewrite the equation as:

$$
b c=b(x) c(x)=\left(b_{L} x+b_{R}\right)\left(c_{L} x+c_{R}\right)=\left(b_{L} c_{L}\right) x^{2}
$$

algorithm

$$
\begin{gathered}
+\left(\left(b_{L}+b_{R}\right)\left(c_{L}+c_{R}\right)-b_{L} c_{L}-b_{R} c_{R}\right) x \\
+b_{R} c_{R},
\end{gathered}
$$

Its running time is $O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)$.

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than $\frac{3}{10}$'s and smaller than $\frac{7}{10}$'s of the array elements. This is used in the linear time selection algorithm to find element of rank k.

```
Pseudocode: Quickselect with median of medians
```

```
Median-of-medians ( }A,i\mathrm{ ):
    sublists =[Alj:j+5] for j \leftarrow0, 5, , ., len (A)]
    medians = [sorted (sublist)[len (sublist)/2]
        for sublist }\in\mathrm{ sublists]
    // Base case
    if len (A) }\leq5\mathrm{ return sorted (a)[i]
    // Find median of medians
    if len (medians) \leq5
        pivot = sorted (medians)[len (medians)/2]
    else
        pivot = Median-of-medians (medians, len/2)
    // Partitioning step
    low= lj for }j\inA\mathrm{ if }j<\mathrm{ pivot]
    high = [j for }j\inA\mathrm{ if }j>\mathrm{ pivot]
    k = len (low)
    if }i<
        return Median-of-medians(low, i)
    else if i>k
        return Median-of-medians (low, i-k-1)
    else
    return pivot
```


Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the length of a longest increasing subsequence in a unordered sequence, where the sequence is assumed to be given as an array. The recurrence can be written as:

$$
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } i=0 \\
\operatorname{LIS}(i-1, j) & \text { if } A[i] \geq A[j] \\
\max \left\{\begin{array}{cl}
\operatorname{LIS}(i-1, j) \\
1+\operatorname{LIS}(i-1, i)
\end{array}\right. & \text { else }\end{cases}
$$

Pseudocode: LIS - DP

LIS-Iterative $(A[1 . . n])$:

$$
\begin{aligned}
& A[n+1]=\infty \\
& \text { for } j \leftarrow 0 \text { to } n \\
& \quad \text { if } A[i] \leq \text { A[j] then } L I S[0][j]=1 \\
& \text { for } i \leftarrow 1 \text { to } n-1 \text { do } \\
& \quad \text { for } j \leftarrow i \text { to } n-1 \text { do } \\
& \quad \text { if } A[i] \geq A[j] \\
& \quad L I S[i, j]=L I S[i-1, j] \\
& \quad \text { else } \\
& \quad L I S[i, j]=\max \{L I S[i-1, j], \\
& \quad 1+L I S[i-1, i]\}
\end{aligned} \quad \begin{aligned}
& \text { return } \operatorname{LIS}[n, n+1]
\end{aligned}
$$

Edit distance

The edit distance problem asks how many edits we need to make to a sequence for it to become another one. The recurrence is given as:

$$
\operatorname{Opt}(i, j)=\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+\operatorname{Opt}(i-1, j-1) \\
\delta+\operatorname{Opt}(i-1, j) \\
\delta+\operatorname{Opt}(i, j-1)
\end{array}\right.
$$

Base cases: $\operatorname{Opt}(i, 0)=\delta \cdot i$ and $\operatorname{Opt}(0, j)=\delta \cdot j$

$$
\begin{aligned}
& E D I S T(A[1 . . m], B[1 . . n]) \\
& \quad \text { for } i \leftarrow 1 \text { to } m \text { do } M[i, 0]=i \delta \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } M[0, j]=j \delta \\
& \text { for } i=1 \text { to } m \text { do } \\
& \text { for } j=1 \text { to } n \text { do } \\
& \qquad[i][j]=\min \left\{\begin{array}{c}
C O S T[A[i]][B[j]] \\
+M[i-1][j-1], \\
\delta+M[i-1][j] \\
\delta+M[i][j-1]
\end{array}\right.
\end{aligned}
$$

2 Graph algorithms

Graph basics

A graph is defined by a tuple $G=(V, E)$ and we typically define $n=|V|$ and $m=|E|$. We define (u, v) as the edge from u to v. Graphs can be represented as adjacency lists, or adjacency matrices though the former is more commonly used.

- path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) Note: a single vertex u is a path of length 0 .
- cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$. A single vertex is not a cycle according to this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.
- A vertex u is connected to v if there is a path from u to v.
- The connected component of u, con (u), is the set of all vertices connected to u.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let r ch (u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that enables dynamic programming algorithms to be used on them.
A topological ordering of a dag $G=(V, E)$ is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Pseudocode: Kahn's algorithm
$\operatorname{Kahn}(G(V, E), u)$:
toposort \leftarrow empty list
for $v \in V$:
$\operatorname{in}(v) \leftarrow|\{u \mid u \rightarrow v \in E\}|$
while $v \in V$ that has in $(v)=0$
Add v to end of toposort
Remove v from V
for v in $u \rightarrow v \in E$
$\operatorname{in}(v) \leftarrow \operatorname{in}(v)-1$
return toposort

Running time: $O(n+m)$

- A dag may have multiple topological sorts.
- A topological sort can be computed by DFS, in particular by listing the vertices in decreasing post-visit order.

DFS and BFS

Pseudocode: Explore (DFS/BFS)

Explore (G,u):

for $i \leftarrow 1$ to n
Visited $[i] \leftarrow$ False
Add u to ToExplore and to S
Visited $[u] \leftarrow$ True
Make tree T with root as u
while B is non-empty do
Remove node x from B
for each edge (x, y) in $\operatorname{Adj}(x)$ do
if Visited $[y]=$ False
Visited $[y] \leftarrow$ True
Add y to B, S, T (with x as parent)

Note:

- If B is a queue, Explore becomes BFS
- If B is a stack, Explore becomes DFS.

Pre and post numbering aids in analyzing the graph structure. By looking at the numbering we can tell if a edge (u, v) is a:
Forward edge: $\operatorname{pre}(u)<\operatorname{pre}(v)<\operatorname{post}(v)<\operatorname{post}(u)$

- Backward edge: $\operatorname{pre}(v)<\operatorname{pre}(u)<\operatorname{post}(u)<\operatorname{post}(v)$
- Cross edge: $\operatorname{pre}(u)<\operatorname{post}(u)<\operatorname{pre}(v)<\operatorname{post}(v)$

Strongly connected components

- Given G, u is strongly connected to v if $v \in$ $\operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.
- A maximal group of vertices that are all strongly connected to one nother is called a strong component.

Pseudocode: Metagraph - linear time

Metagraph $(G(V, E))$:
Compute $\operatorname{rev}(G)$ by brute force
ordering \leftarrow reverse postordering of V in $\operatorname{rev}(G)$
by $\operatorname{DFS}(\operatorname{rev}(G), s)$ for any vertex s
Mark all nodes as unvisited
for each u in ordering do
if u is not visited and $u \in V$ then
$S_{u} \leftarrow$ nodes reachable by u by $\operatorname{DFS}(G, u)$ Output S_{u} as a strong connected component $G(V, E) \leftarrow G-S_{u}$

Shortest paths

Dijkstra's algorithm:

Find minimum distance from vertex s to all other vertices in graphs without negative weight edges.

Pseudocode: Dijkstra

$$
\begin{aligned}
& \text { for } v \in V \text { do } \\
& \quad d(v) \leftarrow \infty \\
& X \leftarrow \varnothing \\
& d(s, s) \leftarrow 0 \\
& \text { for } i \leftarrow 1 \text { to } n \text { do } \\
& \quad v \leftarrow \arg \min _{u \in V-X} d(u) \\
& \quad X=X \cup\{v\} \\
& \quad \text { for } u \text { in } \operatorname{Adj}(v) \text { do } \\
& \quad \quad(u) \leftarrow \min \{(d(u), d(v)+\ell(v, u))\} \\
& \text { return } d
\end{aligned}
$$

Running time: $O(m+n \log n)$ (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm:

Find minimum distance from vertex s to all other vertices in graphs without negative cycles. It is a DP algorithm with the following recurrence:

$$
d(v, k)=\left\{\begin{array} { l l }
{ 0 } & { \text { if } v = s \text { and } k = 0 } \\
{ \infty } & { \text { if } v \neq s \text { and } k = 0 }
\end{array} \left\{\begin{array}{ll}
\min _{u v \in E}\{d(u, k-1)+\ell(u, v)\} \\
d(v, k-1) & \text { else }
\end{array}\right.\right.
$$

Base cases: $d(s, 0)=0$ and $d(v, 0)=\infty$ for all $v \neq s$
Pseudocode: Bellman-Ford

$$
\begin{aligned}
& \text { for each } v \in V \text { do } \\
& \quad d(v) \leftarrow \infty \\
& d(s) \leftarrow 0 \\
& \text { for } k \leftarrow 1 \text { to } n-1 \text { do } \\
& \quad \text { for each } v \in V \text { do } \\
& \quad \text { for each edge }(u, v) \in \operatorname{in}(v) \text { do } \\
& \quad d(v) \leftarrow \min \{d(v), d(u)+\ell(u, v)\} \\
& \text { return } d
\end{aligned}
$$

Running time: $O(n m)$

Floyd-Warshall algorithm:

Find minimum distance from every vertex to every vertex in a graph without negative cycles. It is a DP algorithm with the following recurrence:

$$
d(i, j, k)= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if }(i, j) \notin E \text { and } k=0 \\ \min \begin{cases}d(i, j, k-1) \\ d(i, k, k-1)+d(k, j, k-1)\end{cases} & \text { else }\end{cases}
$$

Then $d(i, j, n-1)$ will give the shortest-path distance from i to j Pseudocode: Floyd-Warshall

```
Metagraph(G(V,E))
    for i\inV do
        for }j\inV\mathrm{ do
            d(i,j,0)\leftarrow\ell(i,j)
                (* \ell(i,j)}\leftarrow\infty if (i,j)\not\inE,0 if i=j*
```

 for \(k \leftarrow 0\) to \(n-1\) do
 for \(i \in V\) do
 for \(j \in V\) do
 \(d(i, j, k) \leftarrow \min \left\{\begin{array}{l}d(i, j, k-1), \\ d(i, k, k-1)+d(k, j, k-1)\end{array}\right.\)
 for \(v \in V\) do
 if \(d(i, i, n-1)<0\) then
 return " \(\exists\) negative cycle in \(G\) "
 return \(d(\cdot, \cdot, n-1)\)
 Running time: $\Theta\left(n^{3}\right)$

