ECE 374 B Reductions, P/NP, and Decidability: Cheatsheet

Turing Machines

Turing machine is the simplest model of computation.

- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Ever step: Read character under head, write character out, move the head right or left (or stay).
- Every TM M can be encoded as a string $\langle M\rangle$

Transition Function: $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\leftarrow, \rightarrow, \square\}$
$\delta(q, c)=(p, d, \leftarrow)$

- q : current state.
- c : character under tape head.

- p : new state.
- d : character to write under tape head
- \leftarrow : Move tape head left.

Complexity Classes

Algorithmic Complexity Classes (assuming $P \neq N P$)

Reductions

A general methodology to prove impossibility results.

- Start with some known hard problem X
- Reduce X to your favorite problem Y

If Y can be solved then so can $X \Longrightarrow Y$. But we know X is hard so Y has to be hard too. On the other hand if we know Y is easy, then X has to be easy too.

The Karp reduction, $X \leq_{P} Y$ suggests that there is a polynomial time reduction from X to Y.

Assuming

- $R(n)$: running time of \mathcal{R}
- $Q(n)$: running time of \mathcal{A}_{Y} Running time of \mathcal{A}_{X} is $O(Q(R(n))$

Sample NP-complete problems

CIRCUITSAT: Given a boolean circuit, are there any input values that make the circuit output True?
3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment?
INDEPENDENTSET: Given an undirected graph G and integer k, what is there a subset of vertices $\geq k$ in G that have no edges among them?

ClIQUE: Given an undirected graph G and integer k, is there a complete complete subgraph of G with more than k vertices?
kPartition: Given a set X of $k n$ positive integers and an integer k, can X be partitioned into n, k-element subsets, all with the same sum?
3CoLor: Given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors?
HAMILTONIANPATH: Given graph G (either directed or undirected), is there a path in G that visits every vertex exactly once?
HAMILTONIANCYCLE: Given a graph G (either directed or undirected), is there a cycle in G that visits every vertex exactly once?
LONGESTPATH: Given a graph G (either directed or undirected, possibly with weighted edges) and an integer k, does G have a path $\geq k$ length?

- Remember a path is a sequence of distinct vertices $\left[v_{1}, v_{2}, \ldots v_{k}\right.$] such that an edge exists between any two vertices in the sequence. A cycle is the same with the addition of a edge $\left(v_{k}, v_{1}\right) \in$ E. A walk is a path except the vertices can be repeated.
A formula is in conjunction normal form if variables are or'ed together inside a clause and then clauses are and'ed together: $\left(\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee x_{5}\right)\right)$. Disjunctive normal form is the opposite $\left(\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(\overline{x_{2}} \wedge x_{4} \wedge x_{5}\right)\right)$

Sample undecidable problems

```
AcceptOnInPUT:}\mp@subsup{A}{TM}{}={\langleM,w\rangle|M\mathrm{ is a TM and M accepts on w}
HALTSONINPUT: Halt TM = {\langleM,w\rangle|M is a TM and halts on input w}
HALTONBLANK: HaltB}\mp@subsup{B}{TM}{}={\langleM\rangle|M\mathrm{ is a TM & M halts on blank input }
    EmpTINESS:}\mp@subsup{E}{TM}{}={\langleM\rangle|M\mathrm{ is a TM and L(M)=ø}
```


