
ECE-374-B: Algorithms and Models of Computation, Fall 2025
Midterm 1 – September 25, 2025

• You can do hard things! Grades do matter, but not as much as you may think, but then life
is uncertain anyway, so what.

• Don’t cheat. The consequence for cheating is far greater than the reward. Just try your
best and you’ll be fine.

• Please read the entire exam before writing anything. Most problems have multiple
parts. Make sure you check the front and back of all the pages!

• This is a closed-book exam. At the end of the exam, you’ll find a multi-page cheat sheet.
Do not tear out the cheatsheet! It messes with the auto-scanner. No outside material is
allowed on this exam.

• You should write your answers legibly and in the space given for the question. Overly
verbose answers will be penalized.

• Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It
messes with the auto-scanner.

• You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend
too much time on questions you do not understand and focus on answering as much as you
can!

• Proofs are required only if we specifically ask for them. Even then, none of the questions
require long inductive proofs. You are only required to give a short explanation of why
your answer is correct.

Name:

NetID:

ECE 374 B Midterm 1 Fall 2025

1 Short Answer (Regular) - 15 points

Unless the question asks for it, no explanation is required for your answers for full credit. Keep
any explanations of your answers to 2 sentences maximum.

a. Write the recursive definition for the following language (Σ= {0,1}):

L1a = {0n1n|n≥ 0}

Solution:
Base case: ϵ ∈ L1a
Recursive case: for a w ∈ L1a, 0w1 ∈ L1a

■

b. Write the regular expression for the following languages (Σ= {0,1}):

i L1bi = {w|w ∈ Σ∗, w does not contain the subsequence 0000}

Solution: L1bi = 1∗(0+ ϵ)1∗(0+ ϵ)1∗(0+ ϵ)1∗ ■

ii L1bii = {w|w ∈ Σ∗, w all strings with alternating 0’s and 1’s} 1

Solution: L1bii = (0+ ϵ)(10)∗(1+ ϵ) ■

1strings where no adjacent symbols are the same

1

ECE 374 B Midterm 1 Fall 2025

2 Short Answer (Automata fun) - 10 points

Unless the question asks for it, no explanation is required for your answers for full credit. Keep
any explanations of your answers to 2 sentences maximum.

a. What language does the push-down automata shown below represent?2

q1start q2

q3q4

ϵ,ϵ→ $
0,ϵ→ 0

1,0→ ϵ

1,0→ ϵ
ϵ, $→ ϵ

ϵ, $→ ϵ

Solution: The above PDA represents the language:

L = {0n1n|n≥ 0} (1)

The PDA for this language works by first reading and pushing the 0’s onto the stack.
Once the 0’s are done being read, the machine matches all the 0’s with the same number
of 1’s. Therefore, this is the language where the number of 0’s and 1’s are the same.
There is also the option to not push any 0’s onto the stack and directly go to the accept
state. Therefore we can also accept the empty string. ■

2I don’t want a English description of what the PDA does, I want a definition of a language: L = {..}

2

ECE 374 B Midterm 1 Fall 2025

b. What language does the Turing machine below represent?

startstart seek1 reset

verify accept

0/$,+1

x/$,+1

0/0,+ 1

x/x ,+ 1

1/x ,−1

0/0,− 1

x/x ,− 1

$/$,+1

x/$,+1
□/□,−1

Solution: The above Turing machine represents the language:

L = {0n1n|n> 0} (2)

There are 5 states being used in this machine and they are as follows:

• start: This state is the beginning of the tape. Scanning to the right, if it reads a 0
mark it as “read” by replacing it with $ and move to seek1, else if it reads see a x
move to verify since it means that all 0’s have been read.

• seek1: Scan right looking for a 1. Skip over symbols until it reads a 1, which it
marks as “read” by replacing it with x and then moves to reset.

• reset: After having found a 1, move all the way back to the left to until you are
at the rightmost $ (which represents the previous 0 which was marked as “read”),
and return back to start and start scanning to the right.

• verify: Scan right and verify that the rest of the tape only has x ’s (meaning that all
the 1’s were read and there were no 1’s that were unread). In other words, check
that the number of 1’s matches up with the number of 0’s, and if true, move to
accept.

• accept: The accept state, after having read the language {0n1n|n> 0}.

Since the only way to move to verify is by scanning a “read” 1, which by construction,
must be matched with a “read” 0, the language cannot accept the empty string. ■

3

ECE 374 B Midterm 1 Fall 2025

3 Checking transformer models- 15 points

I want to prove that L′ = {1w | w ∈ L, } is regular, given L is regular. I remember seeing a similar
question on the SP 22-Exam. I passed my proof request, along with the sample-exam problem
and solution to two different LLMs. Letting M = (Q,Σ,δ, s, A), the LLMs produced the following
language transformations:

GPT-5 Response: https://chatgpt.com/share/68d16412-7184-800f-8569-40e03b8228d5

Q′ =Q× {pre,post}
s′ = (s,pre)
A′ = {(q,post) | q ∈ A}

δ′((q,post), a) = {(δ(q, a),post)}, a ∈ Σ
δ′((q,pre),ϵ) = {(δ(q, 1),post)}

Grok Response: https://grok.com/c/d22ef5b8-4235-4743-9f28-69071d312a7a

Q′ =Q ∪ {s′}
s′ = s′

A′ = A

δ′(s′, 1) = {s}
δ′(q, a) = {δ(q, a)}, q ∈Q, a ∈ Σ

Spoiler alert: Both these solutions are correct!

a. Suppose we need to simulate the NFA resulting from one of the above transformations in a
memory constrained environment. Which LLM’s NFA is more memory-efficient? Succinctly
(1-2 sentences) justify your answer.

Solution: use sum of states and transitions as a proxy for memory.

Q′GPT = 2|Q|,
Q′Grok = |Q|+ 1,

δ′GPT = |δ|+ |Q|,
δ′Grok = |δ|+ 1

|Q′Grok|+ |δ
′
Grok|< |Q

′
GPT|+ |δ

′
GPT|

∴ MemGrok < MemGPT ■

4

ECE 374 B Midterm 1 Fall 2025

b. We decide to run incremental subset construction on each of the above NFAs. Which one leads
to a smaller DFA?

Solution: This one has more layers than an onion. Each demarkate a unique level of
coneptual understanding. Nicely done Sumedh.

Wrong Answer 0: Because Grok’s NFA is smaller, its DFA must be.
Q′Grok <Q′GPT⇒ DFAGrok is smaller.
Error: Directly compares NFA size from part a without recognizing that this problem asks
about DFAs.

.... peeling one layer deeper

Wrong Answer 1: Since Grok’s powerset is smaller, its DFA must be.
QGrok,DFA ⊆ P (Q ∪ {s′}) = 2|Q|+1,
QGPT,DFA ⊆ P (Q× {pre, post}) = 22|Q|,

̸⇒ |QGrok,DFA|< |QGPT,DFA|,
Error: You can take a smaller subset of a larger set. Fails to note that incremental subset is
a greedy exploration algorithm and need not select elements from P (Q).

.... peeling one layer deeper

Almost Correct Answer: Grok and GPT produce the same-size DFA.
Intuition: Grok addss′ and then proceeds with standard DFA execution for L.
GPT uses (s,pre)

ϵ
−→ (δ(s, 1),post) and proceeds with the DFA execution of L after 1

So they are be the same.

Error:What about the fail state(s)?

.... peeling one layer deeper

Correct Answer: GPT’s DFA is strictly smaller by 1.
Reason: Grok’s s′ on 0 yields ; (dead state).
For GPT,ϵ-closure(s,pre) = {(s,pre), (δ(s, 1),post)} ⇒ no 0 edge from (s,pre)
⇒ no dead state for GPT.

|DFAGrok|= |DFAGPT|+ 1. ■

5

ECE 374 B Midterm 1 Fall 2025

c. We now want to build an automaton for L′. Suppose we take Grok’s response and swap
accepting and rejecting states. Would this work?

Solution: This one has layers too, not as many as an onion. Maybe a shallot?

Almost Correct Answer: Yes! Every transition of Grok’s NFA leads leads to a a set
containing a single element...wait thats just a DFA right? And for DFAs, flipping accepting
and rejecting states does produce the complement!.
Error: What happens on inputs with a prefix of 0? There is no transition defined and thus
we reject!

Correct Answer: No! Although Grok’s automaton resembles a DFA, the transition from
s′ on input 0 is undefined. Hence, swapping accepting and rejecting states does not yield
the complement, since some inputs have no valid transition.

Wrong Answer: Yes because of closure. Since L’ is regular L′ is regular
Error: No mention of the correctness of state swapping...

Wrong Answer: Yes. For NFAs/DFAs you can freely swap accepting and rejecting states.
Error: Swapping the accepting and rejecting states in a NFA does not always produce
the complement. ■

d. Reread the first sentence of the problem. The goal was: "Prove that L′ = {1w | w ∈ L} is
regular, assuming L is." Prove this in ≤ 3 lines using regular closure properties.

Solution: Concatenation of two regular languages.

Correct Answer: 1 is regular because it is finite
L is regular (as stated in problem)
The concatenation of two regular languages ({1} · L) is regular.

Wrong Answer: 1 is regular, 1 U L is regular.
Error: Union and concatenation are NOT the same.

Wrong Answer 2: L is regular, 1 ∩ L is regular
Error: Intersection and concatenation are NOT the same.

■

6

ECE 374 B Midterm 1 Fall 2025

4 Language Transformation - 15 points

A run in a string w is a maximal non-empty substring of w in which all symbols are equal. For
example, the string 011111100010000 consists of five runs(0,111111, 000,1, 0000).

For any string w ∈ {0,1}∗, let compact(w) denote the string obtained by replacing each run with a
single symbol from that run. For example, compact(ε) = ε and compact(1101111001) = 10101

Let L be an arbitrary regular language.

Prove that the language compact(L) = {compact(w)|w ∈ L} is regular. 3

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA M ′ =
(Q′, s′, A′,δ′) with compact(L) as follows.

Intuitively, to decide if a string w should be accepted by M ′ or not, we should try to
expand every single bit in w (0 into 0+ and 1 into 1+) and check if any of the resulting strings
is accepted by M . Besides, if w does not have alternating bit, it should get automatically
rejected.

To do this, we just need to keep track of the latest bit M ′ reads so that we can decide
whether we should expand it to 0+ or 1+, and it also helps to verify if the next bit is valid or
not.

• For all q ∈ Q and a ∈ {0,1}, the state (q, a) means (the simulation of) M is in state
q and the previous bit M ′ has read is a, if there is any, and the next input bit M ′ is
expecting is ā. Note: 0̄= 1 and 1̄= 0

• The state s′ means the starting state of M ′ where no bit has been read yet.

Q′ =Q× {0, 1} ∪ {s′}
s′ = s′

A′ = A × {0,1}
δ′((q, a), ā) = (δ(q, ā), ā)

δ′((q, a),ϵ) = (δ(q, a), a)

δ′(s′,ϵ) = {s× {0,1}}
δ′((q, a), a) =∅

Σ′ = Σ

• The first six lines are all you need for full credit, the second-last line is not necessary
as this is an NFA and all un-specified transition will just be treated as resulting in a
trash-state. The last line is trivial.

3Hint: Consider the string w described above. We can break w down into runs of 0’s and 1’s as described in the
problem. So we to construct a new machine for compact(L) that accepts the first 0, then ϵ’s in the places of any
subsequent 0’s, then accepts a 1, then ϵ’s instead of the following 1’s, then a 0, then ϵ’s instead of the following 0’s, etc.

7

ECE 374 B Midterm 1 Fall 2025

• Since we can’t have multiple starting state, we just create a new starting state with ϵ
transition to {s× {0, 1}}, which allows the first bit to be either 0 or 1. We are using
epsilon transition as we might have ϵ ∈ L which implies s ∈ A.

I will also address some common mistakes from off-track solution explaining why these
methods do not work:

• It is true that any string that belongs to compact(L) has alternating bit, but the reverse
implication is incorrect. Think about the case where L = {000}, clearly w= 101 has
alternating bit while we also have w /∈ compact(L). So, there is no regular expression
that can be use to describe compact(L) if we don’t know what L is.

• Same reason as above, it’s impossible to draw one DFA/NFA out without knowing L.
It’s only possible to use language transformation and use 5-tuples to define the NFA
for L′.

• Proof in the form of claiming L = L1 ·L2 ·...·Ln where Li ∈ {0∗, 1∗} and saying replacing
every run with one digit from that run will cause the resulting language be regular
makes no sense. First, regular language is not closed under deletion/replacement.
And n here is not bounded, union/intersection/concatenation is only closed under
finite number of times.

• Assume L1 is a regular language and L2, L3 are two arbitrary languages. L1 ⊂ L2 and
L3 ⊂ L1 doesn’t tell anything about the regularity of L2, L3.

• We titled this question “Language Transformation”, which should remind you of Lab
3. Submissions that do not use language transformation will receive no credit, as
that indicates either an attempt to take a shortcut or a lack of understanding of the
topic. Submissions that are incorrect but demonstrate some application of language
transformation concepts may receive partial credit, evaluated on a case-by-case basis.

■

8

ECE 374 B Midterm 1 Fall 2025

5 Language classification I (2 parts) - 15 points

Let Σ= {0,1}, and define the following languages:

Lx = {w ∈ Σ∗ | every 0 is immediately followed by at least two 1’s}
L y = {0n1n | n≥ 0}

Let L5 = Lx ∩ L y .

a. Is L5 regular? Indicate whether or not by circling one of the choices below. Either way, prove
it.

Solution: regular not regular

Let’s break down Lx first. Strings in Lx would either have zero or more repetitions of
1’s or 011’s, since 0 must be followed by at least two 1’s. It is a regular language with
expression (1+ 011)∗.

Next, let’s consider L y . It is not a regular language. Why? Becuase F = {0i|i ≥ 0} is
a fooling set for L y . We can prove it by considering a pair of strings 0i ,0 j ∈ F such that
i ̸= j. For w= 1i , 0iw ∈ L y and 0 jw /∈ L y .

Since L y is not regular, we can not use the closure properties to prove regularity of
L5. This applies to proving non-regularity as well, because the intersection of a regular
language and a non-regular language is not necessarily non-regular.

Instead, we can determine the strings in L5 by examining the intersection. L y contains
strings with 0’s followed by 1’s, and at least two 1’s must follow a 0, Lx ∩ L y contains
only the empty string, i.e., L5 = {ε}. Note that L5 is not an empty set; it contains the
empty string. Because both languages contain the empty string.

Finite languages are regular. Hence, L5 is regular. ■

b. Is L5 context-free? Indicate whether or not by circling one of the choices below. Either way,
prove it.

Solution: context-free not context-free

Since L5 is regular, it also will be context-free. So proof for 5.a should suffice.

Alternatively, we can use the closure properties to prove it as follows:

• We have already proved that Lx is regular. See 5.a.

• L y can be generated by S→ ε|0S1, which proves that L y is context-free.

• The intersection of a context-free language and a regular language is always
context-free. Hence, L5 is context-free.

We can also write a CFG for L5 to prove that it is context-free. We have already derived
that L5 = {ε} (in 5.a). The CFG will have the following production rule: S→ ε. ■

9

ECE 374 B Midterm 1 Fall 2025

6 Language classification II (2 parts) - 15 points

Let Σ6 = {0,1} and

L6 = {0n1nw | w ∈ Σ∗ and n≥ 1}⁴

a. Is L6 regular? Indicate whether or not by circling one of the choices below. Either way, prove
it.

Solution: regular not regular

We can use fooling set to prove this language is not regular.
Let’s consider the fooling set F = {0i|n> 1}.
Let x and y be arbitrary strings in F .
Then x = 0i , y = 0 j for some positive integers i < j.
Let z = 1i = 1iw∗, where w∗ is ϵ.
Then xz = 0i1i ∈ L6.
And yz = 0 j1i /∈ L6, because i ̸= j.
Thus, F is a fooling set for L6.
Because F is infinite, L6 is not regular.

We need i < j because if i > j, we have j zeros and i ones in yz = 0 j1i , we can treat
the last i − j ones as w∗, so in this case, yz = 0 j1i ∈ L6

■

b. Is L6 context-free? Indicate whether or not by circling one of the choices below. Either way,
prove it.

Solution: context-free not context-free

If you have a correct argument for regularity, you could have just said the “language is
regular and therefore, context-free.” But let’s say you didn’t want to take that risk; here’s
how you prove context-free-ness directly:
We can prove this language is context free by constructing corresponding PDA.
A→ SR (A is the start symbol)
S→ 0S1 | 01 (forces at least one matched 0/1 pair)
R→ 0R|1R|ϵ (any binary suffix)

■

⁴Yes this is very similar to a lab problem, but it is different. Regurgitating a memorized answer will get you in
trouble. Take a moment and think.

10

ECE 374 B Midterm 1 Fall 2025

7 Language classification III (3 parts) - 15 points

During the language classification portion of the exam, when Sumedh wasn’t looking, a student
took out his cellphone asked GPT-5 to help classify the following language as regular, irregular,
context-free, or not-context-free.

L7 = {w ∈ {0,1}∗ | |w|> 3 and every run of 1s in w has odd length}

a. After looking at the paper to the left of him, the student guesses that the language is regular,
so he tries to come up with a regex to prove it! He asks Chat-GPT the following.

Regex Prompt

Write a regular expression for strings where every run of 1’s is odd and is > 3.

GPT-5 Regex: https://chatgpt.com/c/68cdda9d-d5e0-832f-88df-c9d12778a754

0∗((111(11)+)0∗)

Is this regular expression correct or incorrect. If correct, succinctly explain why. Otherwise,
provide a single counterexample.

Solution: The regular expression is incorrect. Consider the strings such as 1110111,
0000, 1110. The strings belong to L7, but are not represented by the given regular
expression. A valid counterexample must be in the language L7, and is not represented
by the given regular expression. Strings such as 000, 0011 are not valid counterexamples.

■

11

ECE 374 B Midterm 1 Fall 2025

b. The student suddenly gets a suspicion that the language might be incorrect and asks GPT-4o
for a fooling set proof for irregularity.

Regex Prompt

Consider the set of binary strings where every run of 1’s is odd, but is also strictly
greater than 3. Prove that this language is irregular via fooling sets. Give me the prefix
and suffixes necessary.

Fooling Set Proof: https://chatgpt.com/c/68ce1216-95d4-8327-ab8c-19c3f1313488

F = {xn = 12n+1 | n= 0,1, 2,3, . . . }.
Consider x i = 12i+1, x j = 12 j+1, where i ̸= j.
Use the suffix y = 0. If i ≥ 2, then x i y ∈ L
If j < 2, then x j y /∈ L
Thus, we have constructed an infinite fooling for L. L is not regular.

Is the following proof correct or incorrect? If incorrect, identify the error.

Solution: The proof is incorrect. Consider x i = 11111 and x j = 111. Then, for the
suffix y = 0, both x i y and x j y are in L. Moreover, for i, j > 1, x i and x j are not
distinguishable. Therefore, F is not a valid fooling set. ■

c. After all this, really there is only one question left: Is L7 regular or not? Either way, prove it!

Solution: (Closure Property)

not regular regular

Let Lx and L y be arbitrary languages where

Lx = {w ∈ {0,1}∗||w|> 3}

L y = {w ∈ {0,1}∗|every run of 1s in w has odd length}

such that L7 = Lx ∩ L y

The regular expression for Lx is (0+ 1)(0+ 1)(0+ 1)(0+ 1)(0+ 1)∗

The regular expression for L y can be obtained by first thinking about how to obtain odd
runs of 1s -> (1(11)∗). Furthermore, we have to make sure that there is at least one 0
between the runs of 1s. After this, a potential edge case could also be how to accept
strings like 000000 and to let the string end with 0s or with a final odd run of 1s.

Based on the above we can obtain the regular expression for L y as

0∗(1(11)∗0+)∗(ϵ + 1(11)∗)0∗

12

ECE 374 B Midterm 1 Fall 2025

Since we are able to find regular expressions for both Lx and L y , we know that these
languages are regular. Furthermore, since ∩ is closed under regular languages and
L7 = Lx ∩ L y , we can say that L7 is regular.

■

Solution: (DFA/Regexp construction)

not regular regular

Another way to solve the question is to construct an NFA, DFA or regex for the entire
problem.
Lets define a DFA M(Q, s, A,δ,Σ) which accepts the Language L7

Q = {(a, b)|a ∈ {Z , O, E, D}, b ∈ {c0, c1, c2, c3, c≥4}}

s = (Z , c0)

A= {(Z , c≥4), (O, c≥4)}

Z = character reading was a 0

O = reading a 1-run with an odd count

E = reading a 1-run with an even count

D = sink state (an even run of 1s was found)

The {c0, c1, c2, c3, c≥4} values represent the length of the total string.

Based on the above, we can construct a DFA as follows:

13

ECE 374 B Midterm 1 Fall 2025

Z0start Z1 Z2 Z3 Z4

O0 O1 O2 O3 O4

E0 E1 E2 E3 E4

D0 D1 D2 D3 D4

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0,1 0,1 0,1 0,1

0

1
0

1

0

1

0,1

■

14

ECE 374 B Midterm 1 Fall 2025

Extra Credit - 5 points

In our lecture (and cheatsheet) we constructed a transformation for L∗ from the NFA of L to
show that regular languages are closed under Kleene star. But in this transformation I specified
that a new start state was required. Can you show me why?

q1start q2 q3 q4
ϵ ϵ

ϵ

ϵ

N

We are adding a extra start state that has a epsilon
transition to an accept state to ensure ϵ is part of the
langauge.
This works.

q2start q3

ϵ

N

We simply make the start state
of the NFA a accepting state to
account for ϵ.
This does not work.

In other words, show me an example of a NFA (which represents a language L) where the left
transform represents L∗ but the right transformation does not represent L∗.

Solution: Given an NFA N that accpets an arbitrary regular language L, the left transform
for L = L∗ introduces an extra start state with ϵ − t ransi t ions
The question asks why we must add this new state, i.e., why the tempting shortcut “just
make the old start state accepting” can fail.

(There can be many counterexamples to this question, one common counterexample
that is easy to understand is down below).

Let L = 0∗1

A very small NFA for L would look as follows:

q1start q2

0

1

This NFA accepts exactly zero or more 0’s followed by a single 1. Note that q1 has an
incoming transition (the 0-loop) (Examples: ϵ,1,01,001, ...)
Now according to right transform given to us, we turn the start state into an accepting state
(q1) and add an ϵ-transition from the final state back to the start state.

q1start q2

0

ϵ

1

15

ECE 374 B Midterm 1 Fall 2025

According to the new NFA above, every string 0k with k ≥ 0 is accepted by staying at q1 the
whole time. The NFA recognizes languages strictly larger than L∗

In particular 0 ∈ L(Nwrong) but as we saw from the left transform 0 /∈ L∗.

L(Nwrong) is introducing new strings not in L∗. Hence, the right transform is incorrect and
extra state state is required. ■

16

ECE 374 B Midterm 1 Fall 2025

This page is for additional scratch work!

17

ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

Definitions

• An alphabet Σ is a finite set of symbols.

• A string in Σ∗ is a finite sequence of symbols in Σ.

• A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

LMULT2 =





1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...
n× 1|n, n× 2|2n, n× 3|3n, . . .





(1)

Language
operations

• For languages A,B the concatenation of A,B is AB =
{xy | x ∈ A, y ∈ B}.

• For languages A,B, their union is A ∪ B, intersection is
A ∩ B, and difference isA \ B (also written asA− B).

• For languageA ⊆ Σ∗ the complement ofA is Ā = Σ∗ \A.

• Σn is the set of all strings of length n.

• Σ∗ = ∪n≥0Σ
n is the set of all strings over Σ.

• Σ+ = ∪n≥1Σ
n is the set of non-empty strings over Σ.

Strings

Definitions

• The length of a stringw (denoted by |w|) is the number of sym-
bols in w.

• For integer n ≥ 0, Σn is set of all strings over Σ of length n.
Σ∗ is the set of all strings over Σ.

• Σ∗ is the set of all strings of all lengths including empty string.

• ε is a string containing no symbols.

• ∅ is the empty set. It contains no strings.

• If x and y are strings then xy denotes their concatena-
tion. Recursively:

– xy = y if x = ε

– xy = a(wy) if x = aw

• v is substring of w ⇐⇒ there exist strings x, y such
that w = xvy.

– If x = ε then v is a prefix of w

– If y = ε then v is a suffix of w

• A subsequence of a string w = w1w2 . . . wn is either
a subsequence of w2 . . . wn or w1 followed by a sub-
sequence of w2 . . . wn .

• Ifw is a string thenwn is defined inductively as follows:
wn = ε if n = 0 or wn = wwn−1 if n > 0

String
operations

2 Overview of language complexity

Overview

regular

context-free

context-sensitive

recursively enumerable

Grammar Languages Production Rules Automaton Examples

Type-0 recursively enumerable
γ → α
(no constraints) Turing machine L = {w|w is a TM which halts}

Type-1 context-sensitive αAβ → αγβ
linear bounded
nondeterministic
Turing machine

L = {anbncn|n > 0}

Type-2 context-free A→ α
nondeterministic
pushdown automata L = {anbn|n > 0}

Type-3 regular A→ aB finite state machine L = {an|n > 0}

Meaning of symbols:
• a - terminal
• A,B - variables
• α, β, γ - strings in {a ∪ A}∗ where α, β are maybe empty, γ is never empty

a

aTable borrowed fromWikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages
by applying

• union,

• concatenation or

• Kleene star

finitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ the language∅
• ε denotes the language {ε}
• a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L1 and L2 respectively (i.e.,L(r1) = L1 and L(r2) = L2) then,

• r1 + r2 denotes the language L1 ∪ L2

• r1·r2 denotes the language L1L2

• r∗1 denotes the language L∗
1

Examples:

• 0∗ - the set of all strings of 0s, including the empty string

• (00000)∗ - set of all strings of 0s with length a multiple of 5

• (0 + 1)∗ - set of all binary strings

Nondeterministic finite automata
NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFAN accepts a string w iff some accepting state is reached byN from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
defined as L(N) = {w | N accepts w}.

A nondeterministic finite automaton (NFA) N = (Q,Σ, s, A, δ) is a five tuple
where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• δ : Q×Σ∪{ε} → P(Q) is the transition function (hereP(Q) is the power
set ofQ)

• s and Σ are the same as in DFAs

Example:

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0, q1, q2, q3}
• Σ = {0, 1}

• δ :

ε 0 1
q0 {q0} {q0} {q0, q1}
q1 {q1, q2} {q2} ∅
q2 {q2} ∅ {q3}
q3 {q3} {q3} {q3}

• s = q0

• A = {q3}

For NFA N = (Q,Σ, δ, s, A) and q ∈ Q, the ε-reach(q) is the set of all
states that q can reach using only ε-transitions.
Inductive definition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q, w) = ε-reach(q)

• if w = a for a ∈ Σ, δ∗(q, a) = εreach
(⋃

p∈ε-reach(q) δ(p, a)
)

• if w = ax for a ∈ Σ, x ∈ Σ∗ : δ∗(q, w) =

εreach
(⋃

p∈ε-reach(q)

(⋃
r∈δ∗(p,a) δ

∗(r, x)
))

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata
DFAs are finite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M)
and defined as L(M) = {w |M accepts w}.

A deterministic finite automaton (DFA) M = (Q,Σ, s, A, δ) is a five tuple
where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• δ : Q× Σ→ Q is the transition function

• s ∈ Q is the start state

• A ⊆ Q is the set of accepting/final states

Example:

q0start q1

1
0

1

0

• Q = {q0, q1}
• Σ = {0, 1}

• δ :
0 1

q0 q1 q0
q1 q0 q1

• s = q0

• A = {q0}

Every string has a unique walk along a DFA. We define the extended transi-
tion function as δ∗ : Q× Σ∗ → Q defined inductively as follows:

• δ∗(q, w) = q if w = ε

• δ∗(q, w) = δ∗(δ(q, a), x) if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

• L(M0) = {w has an even number of 0s} (pictured above) and

• L(M1) = {w has an even number of 1s}.
L(MC) = {w has even number of 0s and 1s}

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

Suppose M0 = (Q0,Σ, s0, A0, δ0) and
M1 = (Q1,Σ, s1, A1, δ1). Then

• Q = Q0×Q1 = {(q0, q1) | q0 ∈ Q0, q1 ∈
Q1}

• s = (s0, s1)

• δ : Q × Σ → Q, where δ((q0, q1), a) =
(δ0(q0, a), δ1(q1, a))

• A = {(q0, q1) | q0 ∈ A0 and q1 ∈ A1}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

regular
expressions

DFAsNFAs

→
NFA→

D
FA

algebraic m
ethod

subset construction

st
at
e
re

m
ov
al

Th
om
ps
on
’s
alg
o

Thompson’s algorithm:

L = Ls ∪ Lt L = L∗
s

L = Ls · Lt

Arden’s rule: IfR = Q + RP thenR = QP∗ .

Fooling sets

Some languages are not regular (Ex. L = {0n1n | n ≥ 0}).
Two states p, q ∈ Q are distinguish-
able if there exists a string w ∈ Σ∗ ,
such that

δ
∗
(p, w) ∈ A and δ

∗
(q, w) /∈ A.

or

δ
∗
(p, w) /∈ A and δ

∗
(q, w) ∈ A.

Two states p, q ∈ Q are equivalent if
for all strings w ∈ Σ∗ , we have that

δ
∗
(p, w) ∈ A ⇐⇒ δ

∗
(q, w) ∈ A.

For a languageL overΣ a set of stringsF (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguish-
able.

4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadrupleG = (V, T, P, S)

• V is a finite set of nonterminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)

• P is a finite set of productions, each of the formA→ αwhereA ∈ V and
α is a string in (V ∪ T)∗ Formally, P ⊆ V × (V ∪ T)∗ .

• S ∈ V is the start symbol

Example: L = {wwR|w ∈ {0, 1}∗} is described by G = (V, T, P, S)
where V, T, P and S are defined as follows:

• V = {S}
• T = {0, 1}
• P = {S → ε | 0S0 | 1S1}
(abbreviation for S → ε, S → 0S0, S → 1S1)

• S = S

Pushdown automata
A pushdown automaton is an NFA with a stack.

The language L = {0n1n | n ≥ 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA)P = (Q,Σ,Γ, δ, s, A) is a six
tuple where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• Γ is a finite set called the stack alphabet

• δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → P(Q × (Γ ∪ {ε})) is the transition
function

• s is the start state

• A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
⟨input read⟩, ⟨stack pop⟩ → ⟨stack push⟩.
A CFG can be converted to a pushdown automaton.

The PDA to the right recog-
nizes the language described
by the following grammar:

S → 0S|1|ε

qsstart

q2

ql

qa

qp21

ε, ε→ $

ε, ε→ S

ε, S → 1
ε, S → ε
0, 0→ ε
1, 1→ ε

ε, $→ ε

ε, S → S

ε, ε→ 0

Context-free closure
Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.

5 Recursively enumerable languages

Turing Machines

Turing machine is the simplest model
of computation.
• Input written on (infinite) one sided
tape.

• Special blank characters.
• Finite state control (similar to DFA).
• Ever step: Read character under
head, write character out, move the
head right or left (or stay).

• Every TM M can be encoded as a
string ⟨M⟩

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading andWriting Head
(moves in both directions)

Transition Function: δ : Q× Γ→ Q× Γ× {←,→,□}

δ(q, c) = (p, d,←)

• q: current state.
• c: character under tape head.
• p: new state.
• d: character to write under tape
head

• ←: Move tape head left.

q pc/d, L

	Short Answer (Regular) - 15 points
	Short Answer (Automata fun) - 10 points
	Checking transformer models- 15 points
	Language Transformation - 15 points
	Language classification I (2 parts) - 15 points
	Language classification II (2 parts) - 15 points
	Language classification III (3 parts) - 15 points

