
ECE-374-B: Algorithms and Models of Computation, Fall 2025
Midterm 1 – September 25, 2025

• You can do hard things! Grades do matter, but not as much as you may think, but then life
is uncertain anyway, so what.

• Don’t cheat. The consequence for cheating is far greater than the reward. Just try your
best and you’ll be fine.

• Please read the entire exam before writing anything. Most problems have multiple
parts. Make sure you check the front and back of all the pages!

• This is a closed-book exam. At the end of the exam, you’ll find a multi-page cheat sheet.
Do not tear out the cheatsheet! It messes with the auto-scanner. No outside material is
allowed on this exam.

• You should write your answers legibly and in the space given for the question. Overly
verbose answers will be penalized.

• Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It
messes with the auto-scanner.

• You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend
too much time on questions you do not understand and focus on answering as much as you
can!

• Proofs are required only if we specifically ask for them. Even then, none of the questions
require long inductive proofs. You are only required to give a short explanation of why
your answer is correct.
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NetID:



ECE 374 B Midterm 1 Fall 2025

1 Short Answer (Regular) - 15 points

Unless the question asks for it, no explanation is required for your answers for full credit. Keep
any explanations of your answers to 2 sentences maximum.

a. Write the recursive definition for the following language (Σ= {0,1}):

L1a = {0n1n|n≥ 0}

b. Write the regular expression for the following languages (Σ= {0,1}):

i L1bi = {w|w ∈ Σ∗, w does not contain the subsequence 0000}

ii L1bii = {w|w ∈ Σ∗, w all strings with alternating 0’s and 1’s} 1

1strings where no adjacent symbols are the same
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2 Short Answer (Automata fun) - 10 points

Unless the question asks for it, no explanation is required for your answers for full credit. Keep
any explanations of your answers to 2 sentences maximum.

a. What language does the push-down automata shown below represent?2

q1start q2

q3q4

ϵ,ϵ→ $
0,ϵ→ 0

1,0→ ϵ

1,0→ ϵ
ϵ, $→ ϵ

ϵ, $→ ϵ

b. What language does the Turing machine below represent?

startstart seek1 reset

verify accept

0/$,+1

x/$,+1

0/0,+ 1

x/x ,+ 1

1/x ,−1

0/0,− 1

x/x ,− 1

$/$,+1

x/$,+1
□/□,−1

2I don’t want a English description of what the PDA does, I want a definition of a language: L = {..}
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3 Checking transformer models- 15 points

I want to prove that L′ = {1w | w ∈ L, } is regular, given L is regular. I remember seeing a similar
question on the SP 22-Exam. I passed my proof request, along with the sample-exam problem
and solution to two different LLMs. Letting M = (Q,Σ,δ, s, A), the LLMs produced the following
language transformations:

GPT-5 Response: https://chatgpt.com/share/68d16412-7184-800f-8569-40e03b8228d5

Q′ =Q× {pre,post}
s′ = (s,pre)
A′ = {(q,post) | q ∈ A}

δ′((q,post), a) = {(δ(q, a),post)}, a ∈ Σ
δ′((q,pre),ϵ) = {(δ(q, 1),post)}

Grok Response: https://grok.com/c/d22ef5b8-4235-4743-9f28-69071d312a7a

Q′ =Q ∪ {s′}
s′ = s′

A′ = A

δ′(s′, 1) = {s}
δ′(q, a) = {δ(q, a)}, q ∈Q, a ∈ Σ

Spoiler alert: Both these solutions are correct!

a. Suppose we need to simulate the NFA resulting from one of the above transformations in a
memory constrained environment. Which LLM’s NFA is more memory-efficient? Succinctly
(1-2 sentences) justify your answer.

3
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b. We decide to run incremental subset construction on each of the above NFAs. Which one leads
to a smaller DFA?

c. We now want to build an automaton for L′. Suppose we take Grok’s response and swap
accepting and rejecting states. Would this work?

d. Reread the first sentence of the problem. The goal was: "Prove that L′ = {1w | w ∈ L} is
regular, assuming L is." Prove this in ≤ 3 lines using regular closure properties.

4
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4 Language Transformation - 15 points

A run in a string w is a maximal non-empty substring of w in which all symbols are equal. For
example, the string 011111100010000 consists of five runs(0,111111, 000,1, 0000).

For any string w ∈ {0,1}∗, let compact(w) denote the string obtained by replacing each run
with a single symbol from that run. For example, compact(ε) = ε and compact(1101111001) =
10101

Let L be an arbitrary regular language.

Prove that the language compact(L) = {compact(w)|w ∈ L} is regular. 3

3Hint: Consider the string w described above. We can break w down into runs of 0’s and 1’s as described in the
problem. So we to construct a new machine for compact(L) that accepts the first 0, then ϵ’s in the places of any
subsequent 0’s, then accepts a 1, then ϵ’s instead of the following 1’s, then a 0, then ϵ’s instead of the following 0’s, etc.

5



ECE 374 B Midterm 1 Fall 2025

5 Language classification I (2 parts) - 15 points

Let Σ= {0,1}, and define the following languages:

Lx = {w ∈ Σ∗ | every 0 is immediately followed by at least two 1’s}
L y = {0n1n | n≥ 0}

Let L5 = Lx ∩ L y .

a. Is L5 regular? Indicate whether or not by circling one of the choices below. Either way, prove
it.

regular not regular

b. Is L5 context-free? Indicate whether or not by circling one of the choices below. Either way,
prove it.

context-free not context-free

6
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6 Language classification II (2 parts) - 15 points

Let Σ6 = {0,1} and

L6 = {0n1nw | w ∈ Σ∗ and n≥ 1}⁴

a. Is L6 regular? Indicate whether or not by circling one of the choices below. Either way, prove
it.

regular not regular

b. Is L6 context-free? Indicate whether or not by circling one of the choices below. Either way,
prove it.

context-free not context-free

⁴Yes this is very similar to a lab problem, but it is different. Regurgitating a memorized answer will get you in
trouble. Take a moment and think.
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7 Language classification III (3 parts) - 15 points

During the language classification portion of the exam, when Sumedh wasn’t looking, a student
took out his cellphone asked GPT-5 to help classify the following language as regular, irregular,
context-free, or not-context-free.

L7 = {w ∈ {0,1}∗ | |w|> 3 and every run of 1s in w has odd length}

a. After looking at the paper to the left of him, the student guesses that the language is regular,
so he tries to come up with a regex to prove it! He asks Chat-GPT the following.

Regex Prompt

Write a regular expression for strings where every run of 1’s is odd and is > 3.

GPT-5 Regex: https://chatgpt.com/c/68cdda9d-d5e0-832f-88df-c9d12778a754

0∗((111(11)+)0∗)

Is this regular expression correct or incorrect. If correct, succinctly explain why. Otherwise,
provide a single counterexample.
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b. The student suddenly gets a suspicion that the language might be incorrect and asks GPT-4o
for a fooling set proof for irregularity.

Regex Prompt

Consider the set of binary strings where every run of 1’s is odd, but is also strictly
greater than 3. Prove that this language is irregular via fooling sets. Give me the prefix
and suffixes necessary.

Fooling Set Proof: https://chatgpt.com/c/68ce1216-95d4-8327-ab8c-19c3f1313488

F = {xn = 12n+1 | n= 0,1, 2,3, . . . }.
Consider x i = 12i+1, x j = 12 j+1, where i ̸= j.
Use the suffix y = 0. If i ≥ 2, then x i y ∈ L
If j < 2, then x j y /∈ L
Thus, we have constructed an infinite fooling for L. L is not regular.

Is the following proof correct or incorrect? If incorrect, identify the error.

c. After all this, really there is only one question left: Is L7 regular or not? Either way, prove it!

9
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Extra Credit - 5 points

In our lecture (and cheatsheet) we constructed a transformation for L∗ from the NFA of L to
show that regular languages are closed under Kleene star. But in this transformation I specified
that a new start state was required. Can you show me why?

q1start q2 q3 q4
ϵ ϵ

ϵ

ϵ

N

We are adding a extra start state that has a epsilon
transition to an accept state to ensure ϵ is part of the
langauge.
This works.

q2start q3

ϵ

N

We simply make the start state
of the NFA a accepting state to
account for ϵ.
This does not work.

In other words, show me an example of a NFA (which represents a language L) where the left
transform represents L∗ but the right transformation does not represent L∗.

10
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This page is for additional scratch work!
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ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

Definitions

• An alphabet Σ is a finite set of symbols.

• A string in Σ∗ is a finite sequence of symbols in Σ.

• A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

LMULT2 =





1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...
n× 1|n, n× 2|2n, n× 3|3n, . . .





(1)

Language
operations

• For languages A,B the concatenation of A,B is AB =
{xy | x ∈ A, y ∈ B}.

• For languages A,B, their union is A ∪ B, intersection is
A ∩ B, and difference isA \ B (also written asA− B).

• For languageA ⊆ Σ∗ the complement ofA is Ā = Σ∗ \A.

• Σn is the set of all strings of length n.

• Σ∗ = ∪n≥0Σ
n is the set of all strings over Σ.

• Σ+ = ∪n≥1Σ
n is the set of non-empty strings over Σ.

Strings

Definitions

• The length of a stringw (denoted by |w|) is the number of sym-
bols in w.

• For integer n ≥ 0, Σn is set of all strings over Σ of length n.
Σ∗ is the set of all strings over Σ.

• Σ∗ is the set of all strings of all lengths including empty string.

• ε is a string containing no symbols.

• ∅ is the empty set. It contains no strings.

• If x and y are strings then xy denotes their concatena-
tion. Recursively:

– xy = y if x = ε

– xy = a(wy) if x = aw

• v is substring of w ⇐⇒ there exist strings x, y such
that w = xvy.

– If x = ε then v is a prefix of w

– If y = ε then v is a suffix of w

• A subsequence of a string w = w1w2 . . . wn is either
a subsequence of w2 . . . wn or w1 followed by a sub-
sequence of w2 . . . wn .

• Ifw is a string thenwn is defined inductively as follows:
wn = ε if n = 0 or wn = wwn−1 if n > 0

String
operations

2 Overview of language complexity

Overview

regular

context-free

context-sensitive

recursively enumerable

Grammar Languages Production Rules Automaton Examples

Type-0 recursively enumerable
γ → α
(no constraints) Turing machine L = {w|w is a TM which halts}

Type-1 context-sensitive αAβ → αγβ
linear bounded
nondeterministic
Turing machine

L = {anbncn|n > 0}

Type-2 context-free A→ α
nondeterministic
pushdown automata L = {anbn|n > 0}

Type-3 regular A→ aB finite state machine L = {an|n > 0}

Meaning of symbols:
• a - terminal
• A,B - variables
• α, β, γ - strings in {a ∪ A}∗ where α, β are maybe empty, γ is never empty

a

aTable borrowed fromWikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy



3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages
by applying

• union,

• concatenation or

• Kleene star

finitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ the language∅
• ε denotes the language {ε}
• a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L1 and L2 respectively (i.e.,L(r1) = L1 and L(r2) = L2) then,

• r1 + r2 denotes the language L1 ∪ L2

• r1·r2 denotes the language L1L2

• r∗1 denotes the language L∗
1

Examples:

• 0∗ - the set of all strings of 0s, including the empty string

• (00000)∗ - set of all strings of 0s with length a multiple of 5

• (0 + 1)∗ - set of all binary strings

Nondeterministic finite automata
NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFAN accepts a string w iff some accepting state is reached byN from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
defined as L(N) = {w | N accepts w}.

A nondeterministic finite automaton (NFA) N = (Q,Σ, s, A, δ) is a five tuple
where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• δ : Q×Σ∪{ε} → P(Q) is the transition function (hereP(Q) is the power
set ofQ)

• s and Σ are the same as in DFAs

Example:

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0, q1, q2, q3}
• Σ = {0, 1}

• δ :

ε 0 1
q0 {q0} {q0} {q0, q1}
q1 {q1, q2} {q2} ∅
q2 {q2} ∅ {q3}
q3 {q3} {q3} {q3}

• s = q0

• A = {q3}

For NFA N = (Q,Σ, δ, s, A) and q ∈ Q, the ε-reach(q) is the set of all
states that q can reach using only ε-transitions.
Inductive definition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q, w) = ε-reach(q)

• if w = a for a ∈ Σ, δ∗(q, a) = εreach
(⋃

p∈ε-reach(q) δ(p, a)
)

• if w = ax for a ∈ Σ, x ∈ Σ∗ : δ∗(q, w) =

εreach
(⋃

p∈ε-reach(q)

(⋃
r∈δ∗(p,a) δ

∗(r, x)
))

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Deterministic finite automata
DFAs are finite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M)
and defined as L(M) = {w |M accepts w}.

A deterministic finite automaton (DFA) M = (Q,Σ, s, A, δ) is a five tuple
where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• δ : Q× Σ→ Q is the transition function

• s ∈ Q is the start state

• A ⊆ Q is the set of accepting/final states

Example:

q0start q1

1
0

1

0

• Q = {q0, q1}
• Σ = {0, 1}

• δ :
0 1

q0 q1 q0
q1 q0 q1

• s = q0

• A = {q0}

Every string has a unique walk along a DFA. We define the extended transi-
tion function as δ∗ : Q× Σ∗ → Q defined inductively as follows:

• δ∗(q, w) = q if w = ε

• δ∗(q, w) = δ∗(δ(q, a), x) if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

• L(M0) = {w has an even number of 0s} (pictured above) and

• L(M1) = {w has an even number of 1s}.
L(MC) = {w has even number of 0s and 1s}

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

Suppose M0 = (Q0,Σ, s0, A0, δ0) and
M1 = (Q1,Σ, s1, A1, δ1). Then

• Q = Q0×Q1 = {(q0, q1) | q0 ∈ Q0, q1 ∈
Q1}

• s = (s0, s1)

• δ : Q × Σ → Q, where δ((q0, q1), a) =
(δ0(q0, a), δ1(q1, a))

• A = {(q0, q1) | q0 ∈ A0 and q1 ∈ A1}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

regular
expressions

DFAsNFAs

→
NFA→

D
FA

algebraic m
ethod

subset construction

st
at
e
re

m
ov
al

Th
om
ps
on
’s
alg
o

Thompson’s algorithm:

L = Ls ∪ Lt L = L∗
s

L = Ls · Lt

Arden’s rule: IfR = Q + RP thenR = QP∗ .

Fooling sets

Some languages are not regular (Ex. L = {0n1n | n ≥ 0}).
Two states p, q ∈ Q are distinguish-
able if there exists a string w ∈ Σ∗ ,
such that

δ
∗
(p, w) ∈ A and δ

∗
(q, w) /∈ A.

or

δ
∗
(p, w) /∈ A and δ

∗
(q, w) ∈ A.

Two states p, q ∈ Q are equivalent if
for all strings w ∈ Σ∗ , we have that

δ
∗
(p, w) ∈ A ⇐⇒ δ

∗
(q, w) ∈ A.

For a languageL overΣ a set of stringsF (could be infinite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguish-
able.



4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadrupleG = (V, T, P, S)

• V is a finite set of nonterminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)

• P is a finite set of productions, each of the formA→ αwhereA ∈ V and
α is a string in (V ∪ T )∗ Formally, P ⊆ V × (V ∪ T )∗ .

• S ∈ V is the start symbol

Example: L = {wwR|w ∈ {0, 1}∗} is described by G = (V, T, P, S)
where V, T, P and S are defined as follows:

• V = {S}
• T = {0, 1}
• P = {S → ε | 0S0 | 1S1}
(abbreviation for S → ε, S → 0S0, S → 1S1)

• S = S

Pushdown automata
A pushdown automaton is an NFA with a stack.

The language L = {0n1n | n ≥ 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA)P = (Q,Σ,Γ, δ, s, A) is a six
tuple where

• Q is a finite set whose elements are called states

• Σ is a finite set called the input alphabet

• Γ is a finite set called the stack alphabet

• δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → P(Q × (Γ ∪ {ε})) is the transition
function

• s is the start state

• A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
⟨input read⟩, ⟨stack pop⟩ → ⟨stack push⟩.
A CFG can be converted to a pushdown automaton.

The PDA to the right recog-
nizes the language described
by the following grammar:

S → 0S|1|ε

qsstart

q2

ql

qa

qp21

ε, ε→ $

ε, ε→ S

ε, S → 1
ε, S → ε
0, 0→ ε
1, 1→ ε

ε, $→ ε

ε, S → S

ε, ε→ 0

Context-free closure
Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.

5 Recursively enumerable languages

Turing Machines

Turing machine is the simplest model
of computation.
• Input written on (infinite) one sided
tape.

• Special blank characters.
• Finite state control (similar to DFA).
• Ever step: Read character under
head, write character out, move the
head right or left (or stay).

• Every TM M can be encoded as a
string ⟨M⟩

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading andWriting Head
(moves in both directions)

Transition Function: δ : Q× Γ→ Q× Γ× {←,→,□}

δ(q, c) = (p, d,←)

• q: current state.
• c: character under tape head.
• p: new state.
• d: character to write under tape
head

• ←: Move tape head left.

q pc/d, L
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