
ECE 374 B: Algorithms and Models of Computation, Fall 2025
Midterm 2 – November 4th, 2025

• You will have 75 minutes (1.25 hours) to solve all the problems. Most have multiple
parts. Don’t spend too much time on questions you don’t understand and focus on
answering as much as you can! Make sure to check both sides of all the pages and make
sure you answered everything. Time is a factor! Budget yours wisely.

• No resources are allowed for use during the exam except a multi-page cheatsheet and
scratch paper on the back of the exam. Do not tear out the cheatsheet or the scratch
paper! It messes with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We will take off points if we have difficulty reading
the uploaded document.

• Incorrect algorithms will receive a score of 0, but slower than necessary but correct
algorithms will always receive some points, even brute force ones. Thus, you should
prioritize the correctness of your submitted algorithms over speed; you will receive more
points that way. On the other hand, submit the fastest algorithms that you know are
correct; faster algorithms will receive more points.

• Any recursive backtracking algorithm or dynamic programming algorithm given without
an English description of the recursive function (i.e., a description of the output of the
function in terms of their inputs) will receive a score of 0.

• Any greedy algorithm or a modification of a standard graph algorithm given without a
proof of correctness will receive a score of 0.

• For problems with a graph given as input, you may assume the graph is simple (i.e., it has
no self-loops or parallel edges).

• Only algorithms referenced in the cheat sheet may be referred to as a “black box”. You may
not simply refer to a prior lab/homework for the solution and must give the full answer.

• Unless explicitly mentioned, a runtime analysis is required for each given algorithm.

• Don’t cheat. If we catch you, you will get an F in the course.

• Good luck!

Name:

NetID:

ECE 374 B Midterm 2 Fall 2025

1 Short answer - 15 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your answers,
but a complete proof is not required. Partial credit is limited.

(a) For each of the following recurrences, do the following:

• Provide a tight asymptotic upper bound.

• No partial credit. Draw a square around your final answer.

(i)

A(n) = nA(n− 1) + n A(1) = 1

Solution: We can begin by visualizing the tree as follows:

n

n(n− 1)

n(n− 1)(n− 2)

...

n!

n levels

At root level the work is n; at level 1 it is n(n− 1); at level 2 it is n(n− 1)(n− 2);
and so on, until level n− 1, where the cost is

n(n− 1)(n− 2) · · ·2 · 1= n!.

Since each level’s work is larger than all previous levels, the total work is dominated
by the last level (leaf dominated). Hence the asymptotic upper bound for A(n) is
O(n!)
Alternatively, we can write A(n) as follows:

A(n) = n(n−1)(n−2) · · · (n−k+1) ·A(n−k)+n+n(n−1)+n(n−1)(n−2)+ · · ·

Using A(1) = 1, We can say that k = n− 1,

A(n) = n!A(1) + n+ n(n− 1) + n(n− 1)(n− 2) + · · ·+ n!

1

ECE 374 B Midterm 2 Fall 2025

According to the above closed form, we can ascertain that the dominant term in
this expression is n!, hence the asymptotic upper bound becomes O(n!) ■

(ii)

B(n) = 2B(n/2) + n2 B(1) = 1

Solution: This is directly from Quiz 07 (BYG).

n2

2 ∗ (n/2)2 = n2/2

4 ∗ (n/4)2 = n2/4

...

log(n) levels

The amount of work is dominated by the root which makes the tight asymptotic
bound: O(n2). ■

2

ECE 374 B Midterm 2 Fall 2025

(b) For the recurrence T (n) = aT (n
4) +

p
n T (1) = 1, what is the minimum value of a for

which the asymptotic bound of the recurrence would = O(
p

nlog(n))

Solution: So there are a couple interpretations for a which are reasonable and will be
awarded full credit. The crux of the issue is that the question asks what is the minimum
value of a for which the asymptotic bound is O(

p
nlog(n)). This would happen when

a = 2 (see below).

But here’s the thing, when a = 1 the asymptotic bound of the recurrence would be
= O (n). That’s still bounded by O(

p
nlog(n))! The definition is of O-notation is that

the function in the parentheses is a upper-bound. So if your recurrence is bounded by
O (n), then it is also bounded by O(

p
nlog(n)) and therefore a = 1 is still a legitimate

answer. The same line of reasoning applies to a = 0. So a = 0,1, 2 would all receive
full credit. ■

Solution: a = 2: When a = 2, the work at each level is:

• First level (root):
p

n

• Second level: 2 ∗
Æ n

4 =
p

n

• Third level: 2 ∗ 2 ∗
Æ

n
16 =

p
n

• etc.

Since the amount of work remains the same at every level, the asymptotic bound is
O(
p

nlog(n)). ■

Solution: a = 0,1

Consider a = 0, Our equation becomes as follows:

T (n) = 0 · T
�n

4

�

+
p

n= O(
p

n)

Since O(
p

n) is bounded by O(
p

nlog(n)), a = 0 is valid

Consider a = 1, Our equation becomes as follows:

• First level (root):
p

n

• Second level:
Æ n

4

• Third level:
Æ

n
16

• etc.

Since the amount of work is decreasing at each level, the tree is root dominated, hence
the amount of work done is O(

p
n)

■

3

ECE 374 B Midterm 2 Fall 2025

Solution: a ≥ 2 (Incorrect) Consider a = 3, the work at each level is:

• First level (root):
p

n

• Second level: 3 ∗
Æ n

4 =
3
2
p

n

• Third level: 3 ∗ 3 ∗
Æ

n
16 =

9
4
p

n

• etc.

So the amount of work is increasing at every level and therefore the total work is leaf
dominated. There are log(n) levels, the asymptotic bound is O

�

�3
2

�log(n)p
n
�

. This is
much larger than what we are looking for. ■

4

ECE 374 B Midterm 2 Fall 2025

(c) Imagine we have two sequences π(x) which returns the x-th digit of π and F ib(x) which
returns the x-th digit of the Fibonacci sequence. Each of these functions take constant (O(1))
time to compute (it’s a lookup table, no need to think about this too much).

Now we have the function below:

f (i, j) =
i
∏

n=0

π(i + F ib(j)) + f (i − 1, j) + f (i, j − 1) (1)

Assuming we can memoize this function perfectly, what is the asymtotic bound of the
calculation for f (n, n)?

Solution: Each call to the function f (i, j) is determined by the pair (i, j). Assuming
that i and j range from 0 to n. We can say that total possible pair of values is going to
be:

(n+ 1) · (n+ 1) = O(n2)

With perfect memoization each of value of (i, j) is going to be computed once. Hence,
the number of subproblems is O(n2).

As mentioned in the question, the functions f (i − 1, j) and f (i, j − 1) takes O(1) time
for computation. So the only influential part on the upper bound is going to be

i
∏

n=0

π(n+ F ib(j))

Since the above subpart is running from i = 0 to i = n and we know that π(x) takes
O(1) time for computation, The cost of computing a product for a fixed (i, j) takes O(n)
time.

Hence, we have O(n2) distinct subproblems, and the average work per subproblem is
O(n), so the total work done is O(n) ·O(n2) = O(n3)

■

Solution: (Optimal) Build a separate look up table defined as:

prod[i, j] =
i
∏

n=0

[π(n+ F ib(j))] =
i−1
∏

n=0

[π(n+ F ib(j))] ·π(i + F ib(j))

We can rewrite the above equation as:

prod[i, j] = prod[i − 1, j] ·π(i + F ib(j))

Now, for any fixed value of j, it takes O(n) time to calculate prod[i, j] such that
∀i ∈ [0, n]. So, it takes O(n2) time to fill prod[i, j], ∀i, j ∈ [0, n].

Then,
f (i, j) = prod[i, j] + f (i − 1, j) + f (i, j − 1)

5

ECE 374 B Midterm 2 Fall 2025

Hence, with memoization, it takes O(n2) time to solve f (n, n)

■

6

ECE 374 B Midterm 2 Fall 2025

2 Short answer (Recursion+DP) - 15 points

Answer the following questions (partial credit will be limited). You may briefly (no more
than 2 sentences) justify your answers, but a complete proof is not required. Partial credit is
limited.

(a) A variation of this question was in Quiz 8.
I’d like to use the median-of-medians (MoM) algorithm but I don’t want to write a
function that finds the median value in a list of 5 values. Instead I break the input
area into lists of 3 values, and choose the median of medians pivot that way. Hint: the
original MoM can be found in the cheatsheet

(i) What is the recurrence that describes this new algorithm?

Solution: We first break a list of n elements into ⌊ n
3 ⌋ groups of size 3 each.

Finding the median of each list through brute force takes O(n) time. Finding
the median of those ≈ n/3 medians takes T (n

3) time. We then partition our
array into a smaller and larger array, which takes O(n) time, and have recursive
calls for each partition. The runtime of the recursive calls is dominated by the
larger partition, which is of size T

�3x−1
4x

�

= T
�2

3

�

, where x = 3 is the size
of the lists we split into. We therefore arrive at our final recurrence for this
algorithm:

T (n) = T
�n

3

�

+ T
�

2n
3

�

+O(n)

■

(ii) What is the asymptotic running time of this version of MoM?

Solution: Drawing out the recursion tree shows that there is O(n) work at
each level. Therefore, total runtime is dependent on the number of levels in
the tree, which is O(log n), since the largest subproblem shrinks at a rate of
2
3 . Therefore, we arrive at our final runtime:

T (n) = O(n log n)

■

7

ECE 374 B Midterm 2 Fall 2025

(b) Along similar lines, I’d like to use the QuickSort Algorithm but instead of randomly
selecting the pivot (which is the usual implementation), I will use the median of medians
method find a pivot. Let’s use the original method for finding in the pivot (breaking the
array in lists of size 5, then finding the median of each of those lists and then finding
the median of those medians). Finding the pivot for an array of size n takes O(n) time.

(i) What is the recurrence that describes this new algorithm?

Solution: This was discussed in Lecture 10. The exact recurrence appears in
slide 31 but we discussed QuickSort recurrence before that and used it as a
motivation to discuss the deterministic time selection algorithm.

Finding the pivot using MoMwith a list size 5 takes O(n) time. Partitioning
the array based on the pivot takes O(n) time. MoM with list size 5 guarantees
that at least 3n

10 of the elements are ≥ the pivot and at least 3n
10 of the elements

are ≤ than the pivot. Therefore, in the worst case, one partition has at least
3n
10 elements and the other has at most 7n

10 elements, and recurseivly sorting
these takes T
� 3

10

�

+ T
� 7

10

�

time. We therefore arrive at our final recurrence:

T (n) = T
�

3n
10

�

+ T
�

7n
10

�

+O(n) +O(n)

■

(ii) What is the worst-case asymptotic running time of this QuickSort algorithm?

Solution: Drawing out the recursion tree shows that there is O(n) work at
each level. Therefore, total runtime is dependent on the number of levels in
the tree, which is O(log n), since the largest subproblem shrinks at a rate of
7
10 . Therefore, we arrive at our final runtime:

T (n) = O(n log n)

This was also on your cheatsheet. ■

8

ECE 374 B Midterm 2 Fall 2025

(c) Recall that the recurrence for the longest palindrome problem (you are given a sequence
of number A[1 . . . n] and you need to find the longest palindromic sequence in A):

LPS(i, j) =



















































0 if i > j

1 if i = j

max

¨

LPS(i + 1, j)
LPS(i, j − 1)

«

if i < j and A[i] ̸= A[j]

max











2+ LPS(i + 1, j − 1)
LPS(i + 1, j)
LPS(i, j − 1)











otherwise

In plain English, what does LPS(i, j) represent?

Solution: This question format is directly from quiz 11 and the palindrome
recurrence is in Lab11-P6 and Lab12P7.

LPS(i, j) denotes the length of the longest palindrome subsequence of A[i . . . j]. ■

9

ECE 374 B Midterm 2 Fall 2025

3 Short answer (Graphs) - 20 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your
answers, but a complete proof is not required. Partial credit is limited.

(a) What is the maximum number of edges a directed-acyclic-graph with n vertices may
have? I don’t want a asymptotic bound. I want the actual value.

Solution: We discussed this problem at length in the lecture before the midterm.
It’s in the recording.

In any directed acyclic graph with n labeled vertices we can topologically sort
the verticies such that

v1, v2, . . . , vn

and every edge is of the form vi → v j with i < j.
To avoid cycles, we can only include edges from earlier to later vertices in this

ordering. For each pair 1 ≤ i < j ≤ n, we may include the edge vi → v j at most
once. The number of such pairs is

�

n
2

�

=
n(n− 1)

2
.

Taking the maximum number of edges yields the answer above. ■

Solution: Alternate explanation: The fact that the we have a DAG means that it
can be sorted in topological order. Topological order means all the edges have to
“flow” in one direction. Therefore, the first vertex i the topological order can be
connected to n− 1 vertices, the second vertex can be connected to n− 2 vertices,
and so on. Therefore we want the sum of all these edges:

Σi = 1n(n− i) =
n (n− 1)

2

This is just Gausse’s sum. Anything that is similar to n2

2 recieved credit (that 1
2

term is important though). ■

10

https://mediaspace.illinois.edu/media/t/1_ue340ggc?st=1250

ECE 374 B Midterm 2 Fall 2025

(b) Consider the following graph:

s

1

2

3

4

5

1

1

3

8

-1
3

5

1

-1

1

1

We call the Bellman-Ford algorithm on this graph (making node s the starting node)
and fill out the two-dimensional d(i, j) matrix.
What is the value of d(1, 3)?

Solution: d(1, 3) =∞. Node 1 is unreachable from s , and distance values are
intialized to infitinity, so d(1,3) remains∞, ■

(c) Given a directed graph G with n vertices and m unweighted edges, give an algorithm (as
fast as possible - constants matter, not just asymptotes) that finds a vertex u, such that u
is in the sink SCC of the meta-graph of G.

Solution: This is an alternative wording of a quiz question (Quiz 13, Problem type
1(e)).
As stated in the quiz manual:

• Calculate the reverse graph Grev

• Run DFS with pre/post numbering on Grev

• return the vertex with the largest post number

■

(d) Given a directed graph G with n vertices and m unweighted edges, we know node u is in
the sink SCC of the meta-graph of G. Give an algorithm (as fast as possible - constants
matter, not just asymptotic) that find the other vertices in the sink SCC of G.

Solution: This is also an alternative wording of a quiz question (Quiz 12, Problem
type 1(d)).
In addition, we know that u is in the sink SCC.

• Run S = Ex plore(G, u).
• Return S as the set of all vertices in the sink SCC containing u.

Additional note: since u is in the sink SCC, any path starting at u cannot leave
this SCC, so we only need to run Ex plore(G, u) once to visit the verticies in the
SCC. ■

11

ECE 374 B Midterm 2 Fall 2025

4 Dynamic programming - 15 points

Let’s say you have at your disposable a wide assortment of (not necessarily dollar) coins
and you need to make change for a particular value x . As you’re doing so, you wonder
to yourself: what is the smallest number of coins you need to construct a total of x . So let’s
formalize the question:

Problem: You are given a integer value x and an array A where each element of the array
represents a coin denomination. Coins can be used multiple times.

Output: The smallest number of coins needed to make x . If there is no combination of coins
that can make x , then the output should be 0.

Example: If A= [1, 8,9] and x = 24 output should be 3.

Here is some space so you can work out your solution before filling in the answer in the
requested format on the next page:

Solution: This is a much simpler version of Lab 13 - Problem 1. At a high level, there
can be two(not exhaustive) approaches.

• While keeping track of the remaining amount of change to make, recursively find
the best coin to use.

• While keeping track of the remaining amount of change to make and the coin to
consider, recursively find whether it is better to include the current coin or skip it
and move to the next coin.

The first approach results in a 1-dimensional data structure, while the second results in
a 2-dimensional data structure. ■

12

ECE 374 B Midterm 2 Fall 2025

Recurrence and short English description(in terms of the parameters):

Solution: • 1-D solution: C(i) represents the minimal number of coins required
to make for i amount of change.

C(i) =











∞ if i < 0

0 if i = 0

min
1≤k≤n

C(i − A[k]) + 1 otherwise

• 2-D solution: C(i, j) represents the minimal number of coins required to make
for j amount of change using the coins A[1..i].

C(i, j) =











∞ if j < 0 or i ≤ 0

0 if j = 0

min
�

C(i − 1, j), C(i, j − A[i]) + 1
�

otherwise

• To get full credit for English description, you must explain what C(i) or C(i, j)
represents in terms of i and j, rather than explaining what i and j are or how
the recurrence operates. The correctness of the description is judged based on
whether the correct implementation of the provided English description would
answer the given problem. You may get partial credit for writing a description
that is reasonably close, depending on the grader’s judgment.

• To earn partial credit above 4 for the recurrence, the recurrence you provide must
be sufficiently relevant to the problem, subject to the grader’s judgment. For
example, your recurrence should include a parameter that reasonably keeps track
of the remaining value to make. You may receive 1 point of partial credit for a
recurrence that is irrelevant but still somewhat well-defined.

■

Memoization data structure and evaluation order:

Solution: • 1-D solution: Use a 1-dimensional array A[1..x], evaluating entries in
increasing order of the index.

• 2-D solution: Use a 2-dimensional array A[1..n, 1..x], evaluating entries in
increasing order of both indices.

• Youmust provide either an understandable recurrence or a clear English description
to receive credit, as the correctness of the data structure and evaluation order
depends on the recurrence.

• To receive full credit, both the data structure and the evaluation order must be
correct.

• Note that describing evaluation orders using phrases such as "left to right" or
"top-down" without specifiying the orientation of the axis does not count, as these
descriptions are ambiguous.

• If the dimensions of the data structure do not match the number of parameters

13

ECE 374 B Midterm 2 Fall 2025

in the recurrence you provide, then you must explain how your recurrence maps
onto the data structure in order to receive credit.

■

Return value:

Solution: C(x) for 1-D approach, C(n, x) for 2-D approach. You must provide either
an understandable recurrence or a clear English description to receive credit, as the
correctness of the return value depends on the recurrence. You must specify the exact
cell of the data structure to be returned in order to receive credit. Using the variables
employed in defining the recurrence such as C(i, j) does not count, unless the meaning
or values of these variables are explicitly specified.

■

Time Complexity:

Solution: Since we must iterate over n coins and the change amount less than or
equal to x , the time complexity is O(nx) for both approaches. You must provide either
an understandable recurrence or a clear English description to receive credit, as the
correctness of the time complexity depends on the recurrence. O(n2) is incorrect, as it
does not capture the dependency on the amount of change to make.

■

14

ECE 374 B Midterm 2 Fall 2025

5 Graphing Algorithms - 15 points

You are given a undirected graph G = {V, E} with weighted (all positive) edge weights and
two coins on vertices a and b. Every turn the two coins can only move across one edge. The
weights on the edges represent tolls that the coins have to pay, but once each coin pays the
toll once, they can use the edge again for free.

You want to find the vertex t that the two coins can meet. But there is a wrinkle, you need
to minimize the sum of the tolls that both coins have to pay. Provide an algorithm that finds
this minimal time.

Solution: This is a superficially modified version of Lab15-P3. and like in the lab, there
are multiple solutions. Also like the lab, the coins have to move every turn. It was in the
lab, we re-stated it in the classroom and it is in the problem description ■

Solution (Approach I: Parity Construction): Any sequence of k moves that bring the
two coins to a common vertex x defines a walk of length 2k from a through x to b.
Thus, we are looking for the shortest walk from a to b that uses even number of edges.
We reduce to a standard shortest-path problem in a new graph G′ = (V ′, E′) as follows:

• V ′ = V × {0,1}= {(v, b) | b ∈ V and b ∈ {0, 1}}).
• E′ = {(u, b)(v, 1− b) | uv ∈ E and b ∈ {0,1}}. Edges in G′ are undirected, because

edges in the original graph G are undirected.
For any walk v0�v1�v2� · · ·�vℓ in G, there is a corresponding walk (v0, 0)�

(v1, 1)�(v2, 0)� · · ·�(vℓ,ℓmod 2) in G′. Thus, every even-length walk from s to t
in G corresponds to a walk from (s, 0) to (t, 0) in G′ and vice versa.

• We set the edge weight of E′ as the following: {l((u, b)(v, 1− b)) = l(u, v)|uv ∈
E and b ∈ {0,1}}

• It maybe tempting to just explore the shortest-path distance in G′ from vertex
(a, 0) to (b, 0), but this might not always give the correct answer; as if coin A uses
a certain edge once and wants to re-use it, the toll of that edge will be counted
again in G′.

• To overcome this problem, what we can do is to assume every vertex might be the
meeting point of the two coins. So for every vertex k× {0,1} in G′, just calculate
the shortest path from (a, 0) to k×{0,1} in G′, and (b, 0) to k×{0, 1} in G′, both
using Dijkstra. This gives us two shortest even length paths in G for each k, one
denoting odd length from coin a or b to k, the other denoting even length from
coin a or b to k. Then we just need to simulate all these 2|V | paths in G and find
the one with actual shortest length in G. The simulation is needed as we do have a
shortest path in G′ that represents a shortest walk in G with certain parity, but the
cost of that walk G′ may not necessarily equivalent to the cost of the path in G.

• Constructing the graph by brute force takes O(V ′ + E′) time; running Dijkstra
search twice takes O(V ′logV ′+ E′); doing the simulation takes O(V ′E′) = O(V E).
Thus the resulting algorithm runs in O(V ′logV ′ + E′ + V ′E′) = O(V E) time.

Notes:

15

ECE 374 B Midterm 2 Fall 2025

(a) The graph has all positive non-uniform weights. So Dijkstra gives the best result.
Using Bellman-Ford or Floyd-Warshall will receive some amount of partial credit;
while using BFS/DFS will not.

(b) Approach that trying to modify any graph search algorithm without a proof will
receive a 0.

(c) You can’t run Dijkstra starting on a and b at the same time/simultaneously.

(d) Creating layers/masks representing paid and unpaid edges makes no sense. As
during the graph traverse, there might be 4×2|E| different choices of certain edges
being paid by neither A nor B/ A only/ B only/ both A and B. It is true that one can
use this way as brute force to solve the problem, but a detailed solution is needed
for credit. For example, an algorithm specifically explains a recursive function that
can generate all possible walks that uses no more than 2|E| edges is considered an
okay brute-force algorithm. As otherwise, any question could be answer with the
phrase "Use brute force to solve".

(e) None of the graph search algorithm (BFS/DFS?Dijkstra/BF/FW) will guarantee a
path with certain parity.

(f) It’s not possible to have a ’dynamic’ graph, with modified graph weight during the
construction or traverse process. Modify the graph weight using graph search is
equivalent to modifying an existed graph search algorithm, which worth 0 credit
if no proof is demonstrated.

(g) Useful example graph, stored in an adjacent list:

A : {C : 1, K : 10},
C : {A : 1, D : 1},
D : {C : 1, E : 1},
E : {D : 1, F : 1},
F : {E : 1, B : 1},
B : {F : 1, G : 10, K : 10},
G : {J : 1, H : 1, B : 10},
H : {G : 1, J : 1},
J : {G : 1, H : 1},
K : {A : 10, B : 10}

■

Solution (Approach II: Product Construction): We could also do product construc-
tions. We reduce this problem to a shortest-path problem in an undirected graph
G′ = (V ′, E′) as follows:

• V ′ = V ×V = {(u, v) | u ∈ V and v ∈ V}); the vertices of G′ correspond to possible
placements of the two coins.

• E′ = {(u, v)(u′, v′) | uu′ ∈ E and vv′ ∈ E}. The edges of G′ correspond to legal
moves by the two coins. Edges are undirected, because any move by the two coins

16

ECE 374 B Midterm 2 Fall 2025

can be reversed.

• The weight of the edge (u, v)(u′, v′) is set to the sum of the weights of edge uu′

and vv′, so l((u, v)(u′, v′)) = l(uu′) + l(vv′)

• We need to find the shortest-path distance from vertex (a, b) to any vertex of the
form (v, v).

• First we compute the shortest-path distance from (a, b) to every vertex in G′ that
is reachable from (a, b) using Dijkstra’s algorithm. Then a simple for-loop over the
vertices of the input graph G finds the minimum distance to any marked vertex of
the form (v, v). In particular, if no vertex (v, v) is reachable from (a, b), then no
vertex (v, v) will be marked by Dijkstra, and so the algorithm will correctly report
min∅=∞.

• Once we have the shortest path from (a, b) to (v, v) for all v ∈ V in G′, we will do
a similar simulation as the first approach to find the real shortest toll and meeting
point in G.

• Constructing the graph by brute force takes O(V ′+E′) time. Running Dijkstra once
takes O(V ′logV ′ + E). The simulation takes O(V E). Thus the resulting algorithm
runs in O(V ′+E′+V ′logV ′+V E) =O(V 2+E2+V 2logV 2+V E) = O(V 2logV+E2)
time.

■

17

ECE 374 B Midterm 2 Fall 2025

6 Minimum Spanning Trees - 10 points

For the following graph, label all the safe edges with a (“s”), all the unsafe edges with a
(“u”), and all the edges which are neither with a (“n”):

1

2

3

4

5

6

1 (
)

1 ()

3 ()

8 ()

-1
()

3 (
) 1 ()

2 ()

1 (
)

1 ()

Solution: So as discussed in lecture, the key to this problem is to realize the the safe
edges are all the edges that are part of the MST and the unsafe edges are the edges
that are not part of the MST. But wait! As we discussed at the end of Lecture 18, if
multiple edges have the same weight, you can simply add a bit of weight to each edge
to prioritize some sides over the other. Knowing this, again, the edges that are part of
the MST are the safe edges and the edges that are not part of the MST are the unsafe
edges. Using this logic we have two options:

1

2

3

4

5

6

1 (
s)

1 (u)

3 (u)

8 (u)

-1
(s
)

3 (
u) 1 (s)

2 (u)

1 (
s)

1 (s)

1

2

3

4

5

6

1 (
s)

1 (s)

3 (u)

8 (u)
-1
(s
)

3 (
u) 1 (s)

2 (u)

1 (
s)

1 (u)

But let’s say you forgot about the adding small weights to the edges to make them
distinguishable. Let’s use the definition of safe and unsafe given in lectures where a
safe edge is one where the edge is the minimum edge cost in a particular cut and a
unsafe edge is one where it is the maximum weight edge in a particular cycle. By this
logic, all the non-1 edges are clearly defined as safe or unsafe:

18

ECE 374 B Midterm 2 Fall 2025

1

2

3

4

5

6

1 (
)

1 ()

3 (u)

8 (u)

-1
(s
)

3 (
u) 1 ()

2 (u)

1 (
)

1 ()

Now the issue is what to label the 1-edges. It’s true that since the edges aren’t
distinct, they don’t fit neatly in the definition of safe edges because they are often tied
for the minimum edge weight. There is one cycle containing the 1 edges and -1 edge
that would make the 1-edges tie for the highest weight edge as well. So for the purposes
of this midterm, you can label the 1-edges as safe or neither. Additionally, from the
logic above, labeling {2,6} or {1,3} as unsafe is allowable as well.

1

2

3

4

5

6

1 (
s,n
)

1 (s,n,u)

3 (u)

8 (u)

-1
(s
)

3 (
u) 1 (s, n)

2 (u)

1 (
s,n
)

1 (s, n, u)

Please refer to Gradescope for the actual rubric. We allowed to a lot of variation in
the answers as long as the responses were semi logical. Illogical answers like marking
{1,2} and {1,3} both as unsafe were marked wrong (how would 1 be connected to the
spanning tree then?). ■

19

ECE 374 B Midterm 2 Fall 2025

7 Recursion + Dynamic Programming + Graphs - 10 points

In class, we exhaustively discussed the Floyd-Warshall algorithm (shown below) and while we
mainly focused on how to get the shortest path length, now we want to get the shortest path
itself (the sequence of vertices). Below you are given the Floyd-Warshall algorithm that returns
the minimum path length between any two vertices i and j. Notice that every time the minimum
path length is updated, the intermediate node is recorded within the “Next” matrix.

Write an algorithm/function that reconstructs the minimum path (sequence of vertices)
between i and j using this Next[] matrix.

//Initialize d array) for i = 1 to n do
for j = 1 to n do

d(i, j, 0) = ℓ(i, j)
(* ℓ(i, j) =∞ if (i, j) not edge, 0 if i = j *)
Nex t(i, j) = −1

//Compute length of shortest path
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (d(i, j, k− 1)> d(i, k, k− 1) + d(k, j, k− 1)) then
d(i, j, k) = d(i, k, k− 1) + d(k, j, k− 1)
Nex t(i, j) = k

//Detect negative cycles
for i = 1 to n do

if (d(i, i, n)< 0) then
Output that there is a negative length cycle in G

Solution: Note: We only have access to Next, s, and t. No access to d.

Path Recovery Intuition
Next(i, j) stores the vertex k through which the shortest i→ j passes.
To recover shortest a→ b path (RSP) #RSP(a, b)

Find m s.t. a...m...b is min #m= Next(a, b)
Find path from a to m #RSP(a, m)
Find path from m to b #RSP(m, b)
Concatenate

Core Algorithm: Incomplete, but a starting point
RSP(s, t) returns the shortest path from s to t
RSP(s, t) =
¦

RSP(s, k) · k ·RSP(k, t) where k = Next(s, t)

Observation 1: If there is no s→ t path, -1 appears in the output of RST(s,t)∄ s→ t path
⇒ ∀k, d(s, t, k) =∞
⇒ ∄ k s.t. d(i, j, k−1)> d(i, k, k−1) + d(k, j, k−1)
⇒ Next(s, t) = −1
⇒ −1 ∈ RSP(s, t)
Close-ish Idea 1: Check d(i, j, k−1) ̸=∞. Issue: we don’t have access to d.
Fix: Void output of RST if -1 occurs.

20

ECE 374 B Midterm 2 Fall 2025

Observation 2: If an s→ t path crosses a negative cycle, then Next(i, i) ̸= −1 for some i.
∃negative cycle in G
⇒ ∃i such that SP(i, i) ∋ v ̸= i
⇒ ∃i, Next(i, i) ̸= −1
continued on next page... ■

21

ECE 374 B Midterm 2 Fall 2025

Solution: continued
Failed Idea 1: Traverse diagonal of Next, abort on any non -1 entry. Issue: if the cycle is
not on the s-t path, then our path is valid.
Close-ish Idea: Void RST output if repeated vertices are detected. Issue: Hamiltonian
Cycle?
Fix Part 2: Run RST as normal. If Next(i,i) = -1 for any vertex in path. Void Output.

Observation 3: Worst case path is len-|V |, so RSP(s, t) should terminate in |V | iterations.
Fix: Each call outputs 1 char. Add third variable h, bounded by |V |, to cap recursion depth.

Updated Recurrence
RSP(i, j, h) returns the shortest path from i to j with at most h intermediate vertices.
Requires: 1. unique i and j. 2. i→ j path exists, 3. graph with no negative cycles

RSP(i, j, h) =











ϵ if i = j

−1 if h= 0 and i ̸= j

RSP(i, k, h−1) · k ·RSP(k, j, h−1) where k = Next(i, j)

Final Algorithm
function RecoverPath(s, t, |V|):

if s = t, output s
P ← RSP(s, t, |V |−2)
if −1 ∈ P, output "No s→ t path exists"
if ∃v ∈ P s.t. Next(v, v) ̸= −1, output "Negative cycle in s→ t path"
output P

Runtime:
Line 1: RSP is depth-bounded by |V |. O(|V |)
Line 2: Traverse through path. O(|V |)
Line 3: O(|V |) lookups in table
Total: O(|V |)

Note: 2AM Sumedh thought: If you post something without a stamp they return it to the
sender’s address. What if you put the recipients address under from and your address under to?
Do you never have to pay for stamps again? ■

22

ECE 374 B Midterm 2 Fall 2025

Problem 7 continued

23

ECE 374 B Midterm 2 Fall 2025

EXTRA CREDIT (1 pt)

We know Richard E. Bellman is one of the authors of the Bellman-Ford algorithm but he came up
earlier in lectures as the father of this computing paradigm. What is the computing paradigm he
introduced?

Solution: Dynamic Programming. Also accepted memoization. ■

EXTRA CREDIT (1 pt)

Name a office hour time (Day of week+time) and the TA or CA that hosts that OH time.

Solution: Lots of answers. Look on ecealgo.com. ■

TA/CA name:

OH time:

24

ECE 374 B Midterm 2 Fall 2025

This page is for additional scratch work!

25

ECE 374 B Midterm 2 Fall 2025

This page is for additional scratch work!

26

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

Definitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the first peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi (n, src, dest, tmp):
if (n > 0) then

Hanoi (n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n

k=1 k =
n(n+1)

2

• Geometric series closed-form formula:
∑n

k=0 ark = a 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1), loga b = logc b/ logc a.

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequenceB ofA do

ifB is increasing and |B| > max then
max = |B|

returnmax

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
ifA[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
returnmax

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx + bR)(cLx + cR) = (bLcL)x
2

+ ((bL + bR)(cL + cR)− bLcL − bRcR) x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to find element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i):
sublists = [A[j:j+5] for j← 0, 5, . . . , len(A)]
medians = [sorted (sublist)[len (sublist)/2]

for sublist ∈ sublists]

// Base case
if len (A)≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians)≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot =Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
else if i > k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =





0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n

if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do

if A[i] ≥ A[j]
LIS[i, j] = LIS[i− 1, j]

else
LIS[i, j] = max

{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min





αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 tom doM [i, 0] = iδ
for j ← 1 to n doM [0, j] = jδ

for i = 1 tom do
for j = 1 to n do

M [i][j] = min





COST
[
A[i]

][
B[j]

]

+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

2 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V,E) and we typically define n = |V | and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algorithm

Kahn(G(V,E),u):
toposort←empty list
for v ∈ V :

in(v)← |{u | u→ v ∈ E}|
while v ∈ V that has in(v) = 0:

Add v to end of toposort
Remove v from V
for v in u→ v ∈ E:

in(v)← in(v)− 1
return toposort

Running time: O(n + m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

Strongly connected components
• Given G, u is strongly

connected to v if v ∈
rch(u) and u ∈ rch(v).

• A maximal group of
vertices that are all
strongly connected to
one another is called a
strong component.

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Metagraph - linear time

Metagraph(G(V,E)):
Compute rev(G) by brute force
ordering← reverse postordering of V in rev(G)

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each u in ordering do

if u is not visited and u ∈ V then
Su ← nodes reachable by u by DFS(G, u)
Output Su as a strong connected component
G(V,E)← G− Su

Running time: O(m + n)

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
for i← 1 to n:

Visited[i]← False
Add u to ToExplore and to S
Visited[u]← True
Make tree T with root as u
while ToExplore is non-empty do

Remove node x from ToExplore
for each edge (x, y) inAdj(x) do

if Visited[y] = False
Visited[y]← True
Add y to ToExplore, S, T (with x as parent)

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Running time: O(m + n)

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Minimum Spanning Tress

• Tree = undirected graph in which any two vertices are connected by ex-
actly one path.

• Sub-graph H of G is spanning for G, if G and H have same connected
components.

• A minimum spanning tree is composed of all the safe edges in the graph

• An edge e = (u, v) is a safe edge if there is some partition of V into S
and V \ S and e is the unique minimum cost edge crossing S (one end in
S and the other in V \ S).

• An edge e = (u, v) is an unsafe edge if there is some cy-
cle C such that e is the unique maximum cost edge in C .

Pseudocode: Boruvka’s algorithm: O(mlog(n))

T is∅ (* T will store edges of a MST *)
while T is not spanning do

X ← ∅
for each connected component S of T do

add toX the cheapest edge between S and V \ S
Add edges inX to T

return the set T

Running time: O (mlog (n))

Pseudocode: Kruskal’s algorithm: (m + n)log(m) (using Union-Find structure)

Sort edges in E based on cost
T is empty (* T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do

pick e = (u, v) ∈ E of minimum cost
if u and v belong to different sets

add e to T
merge the sets containing u and v

return the set T

Running time: O ((m + n) log (m)) if using union-find data structure

Pseudocode: Prim’s algorithm: (n)log(n) + m (using Priority Queue)

T ← ∅, S ← ∅, s← 1
∀v ∈ V (G) : d(v)←∞, p(v)← ∅
d(s)← 0
while S ̸= V do

v = argminu∈V \S d(u)
T = T ∪ {vp(v)}
S = S ∪ {v}
for each u inAdj(v) do

d(u)← min

{
d(u)

c(vu)

if d(u) = c(vu) then
p(u)← v

return T

Running time: O (nlog (n) + m) if using Fibonacci heaps

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

for v ∈ V do
d(v)←∞

X ← ∅
d(s, s)← 0
for i← 1 to n do

v ← argminu∈V −X d(u)
X = X ∪ {v}
for u in Adj(v) do

d(u)← min {(d(u), d(v) + ℓ(v, u))}
return d

Running time:O(m+nlogn) (if using a Fibonacci heap as thepriority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) =





0 if v = s and k = 0

∞ if v ̸= s and k = 0

min

{
minuv∈E {d(u, k − 1) + ℓ(u, v)}
d(v, k − 1)

else

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v ̸= s.
Pseudocode: Bellman-Ford

for each v ∈ V do
d(v)←∞

d(s)← 0

for k ← 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v)← min{d(v), d(u) + ℓ(u, v)}

return d

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

d(i, j, k) =





0 if i = j

∞ if (i, j) /∈ E and k = 0

min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)
else

Then d(i, j, n − 1) will give the shortest-path distance from i to j .
Pseudocode: Floyd-Warshall

Metagraph(G(V,E)):
for i ∈ V do

for j ∈ V do
d(i, j, 0)← ℓ(i, j)

(* ℓ(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 0 to n− 1 do
for i ∈ V do

for j ∈ V do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for v ∈ V do
if d(i, i, n− 1) < 0 then

return "∃ negative cycle inG"

return d(·, ·, n− 1)

Running time: Θ(n3)

	Short answer - 15 points
	Short answer (Recursion+DP) - 15 points
	Short answer (Graphs) - 20 points
	Dynamic programming - 15 points
	Graphing Algorithms - 15 points
	Minimum Spanning Trees - 10 points
	Recursion + Dynamic Programming + Graphs - 10 points

