ECE 374 B: Algorithms and Models of Computation, Fall 2025
Midterm 2 — November 4th, 2025

* You will have 75 minutes (1.25 hours) to solve all the problems. Most have multiple
parts. Don’t spend too much time on questions you don’t understand and focus on
answering as much as you can! Make sure to check both sides of all the pages and make
sure you answered everything. Time is a factor! Budget yours wisely.

* No resources are allowed for use during the exam except a multi-page cheatsheet and
scratch paper on the back of the exam. Do not tear out the cheatsheet or the scratch
paper! It messes with the auto-scanner.

* You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

* Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We will take off points if we have difficulty reading
the uploaded document.

* Incorrect algorithms will receive a score of 0, but slower than necessary but correct
algorithms will always receive some points, even brute force ones. Thus, you should
prioritize the correctness of your submitted algorithms over speed; you will receive more
points that way. On the other hand, submit the fastest algorithms that you know are
correct; faster algorithms will receive more points.

* Any recursive backtracking algorithm or dynamic programming algorithm given without
an English description of the recursive function (i.e., a description of the output of the
function in terms of their inputs) will receive a score of 0.

* Any greedy algorithm or a modification of a standard graph algorithm given without a
proof of correctness will receive a score of 0.

* For problems with a graph given as input, you may assume the graph is simple (i.e., it has
no self-loops or parallel edges).

* Only algorithms referenced in the cheat sheet may be referred to as a “black box”. You may
not simply refer to a prior lab/homework for the solution and must give the full answer.

* Unless explicitly mentioned, a runtime analysis is required for each given algorithm.
* Don’t cheat. If we catch you, you will get an F in the course.

e Good luck!

Name:

NetlID:

ECE 374 B Midterm 2 Fall 2025

1 Short answer - 15 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your answers,
but a complete proof is not required. Partial credit is limited.

(a) For each of the following recurrences, do the following:

* Provide a tight asymptotic upper bound.

* No partial credit. Draw a square around your final answer.
®

An)=nA(n—1)+n A(l)=1

(i)

B(n)=2B(n/2)+n*> B(1)=1

(b) For the recurrence T(n) = aT(%) +/n T(1) = 1, what is the minimum value of a for
which the asymptotic bound of the recurrence would = O(4/nlog(n))

ECE 374 B Midterm 2 Fall 2025

(c) Imagine we have two sequences 7t(x) which returns the x-th digit of 7w and Fib(x) which
returns the x-th digit of the Fibonacci sequence. Each of these functions take constant (O(1))
time to compute (it’s a lookup table, no need to think about this too much).

Now we have the function below:

Fa =] [rG+FibG)+fli—1,)+f(j—1) (1)

n=0

Assuming we can memoize this function perfectly, what is the asymtotic bound of the
calculation for f(n,n)?

ECE 374 B Midterm 2 Fall 2025

2 Short answer (Recursion+DP) - 15 points

Answer the following questions (partial credit will be limited). You may briefly (no more
than 2 sentences) justify your answers, but a complete proof is not required. Partial credit is
limited.

(@) I'd like to use the median-of-medians (MoM) algorithm but I don’t want to write a
function that finds the median value in a list of 5 values. Instead I break the input
area into lists of 3 values, and choose the median of medians pivot that way. Hint: the
original MoM can be found in the cheatsheet

(i) What is the recurrence that describes this new algorithm?

(ii) What is the asymptotic running time of this version of MoM?

(b) Along similar lines, I'd like to use the QuickSort Algorithm but instead of randomly
selecting the pivot (which is the usual implementation), I will use the median of medians
method find a pivot. Let’s use the original method for finding in the pivot (breaking the
array in lists of size 5, then finding the median of each of those lists and then finding
the median of those medians). Finding the pivot for an array of size n takes O(n) time.

(i) What is the recurrence that describes this new algorithm?

(ii) What is the worst-case asymptotic running time of this QuickSort algorithm?

ECE 374 B

Midterm 2 Fall 2025

(c) Recall that the recurrence for the longest palindrome problem (you are given a sequence
of number A[1...n] and you need to find the longest palindromic sequence in A):

m
LPS(i,j) =

0 ifi>j

1 ifi=j
LPS(i+1,7)

ax
LPS(i,j—1)
24+LPS(i+1,j—1)

LPS(i + 1,)
LPS(i,j—1)

ifi <jandA[i]#A[j]

max otherwise

In plain English, what does LPS(i, j) represent?

ECE 374 B Midterm 2 Fall 2025

3 Short answer (Graphs) - 20 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your
answers, but a complete proof is not required. Partial credit is limited.

(a) What is the maximum number of edges a directed-acyclic-graph with n vertices may
have? I don’t want a asymptotic bound. I want the actual value.

(b) Consider the following graph:

We call the Bellman-Ford algorithm on this graph (making node s the starting node)
and fill out the two-dimensional d(i, j) matrix.

What is the value of d(1,3)?

ECE 374 B Midterm 2 Fall 2025

(c) Given a directed graph G with n vertices and m unweighted edges, give an algorithm (as
fast as possible - constants matter, not just asymptotes) that finds a vertex u, such that u
is in the sink SCC of the meta-graph of G.

(d) Given a directed graph G with n vertices and m unweighted edges, we know node u is in
the sink SCC of the meta-graph of G. Give an algorithm (as fast as possible - constants
matter, not just asymptotic) that find the other vertices in the sink SCC of G.

ECE 374 B Midterm 2 Fall 2025

4 Dynamic programming - 15 points

Let’s say you have at your disposable a wide assortment of (not necessarily dollar) coins
and you need to make change for a particular value x. As you're doing so, you wonder
to yourself: what is the smallest number of coins you need to construct a total of x. So let’s
formalize the question:

Problem: You are given a integer value x and an array A where each element of the array
represents a coin denomination. Coins can be used multiple times.

Output: The smallest number of coins needed to make x. If there is no combination of coins
that can make x, then the output should be o.

Example: If A=[1,8,9] and x = 24 output should be 3.

Here is some space so you can work out your solution before filling in the answer in the
requested format on the next page:

ECE 374 B Midterm 2 Fall 2025

Recurrence and short English description(in terms of the parameters):

Memoization data structure and evaluation order:

Return value:

Time Complexity:

ECE 374 B Midterm 2 Fall 2025

5 Graphing Algorithms - 15 points

You are given a undirected graph G = {V, E} with weighted (all positive) edge weights and
two coins on vertices a and b. Every turn the two coins can only move across one edge. The
weights on the edges represent tolls that the coins have to pay, but once each coin pays the
toll once, they can use the edge again for free.

You want to find the vertex t that the two coins can meet. But there is a wrinkle, you need
to minimize the sum of the tolls that both coins have to pay. Provide an algorithm that finds
this minimal time.

ECE 374 B Midterm 2 Fall 2025

6 Minimum Spanning Trees - 10 points

For the following graph, label all the safe edges with a (“s”), all the unsafe edges with a
(“u”), and all the edges which are neither with a (“n”):

10

ECE 374 B Midterm 2 Fall 2025

7 Recursion + Dynamic Programming + Graphs - 10 points

In class, we exhaustively discussed the Floyd-Warshall algorithm (shown below) and while we
mainly focused on how to get the shortest path length, now we want to get the shortest path
itself (the sequence of vertices). Below you are given the Floyd-Warshall algorithm that returns
the minimum path length between any two vertices i and j. Notice that every time the minimum
path length is updated, the intermediate node is recorded within the “Next” matrix.

Write an algorithm/function that reconstructs the minimum path (sequence of vertices)
between i and j using this Next[] matrix.

//Initialize d array) for i=1 to n do
for j=1 to n do
d(i,j,0)=£(1,)
(x £(i,j)=o00 if (i,j) not edge, O if i=j *)
Next(i,j)=-1

//Compute length of shortest path
for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(k,j,k—1)) then
d(i,j,k)=d(i,k,k—1)+d(k,j,k—1)
Next(i,j)=k

//Detect negative cycles
for i=1 to n do
if (d(i,i,n) <0) then
Output that there is a negative length cycle in G

11

ECE 374 B Midterm 2 Fall 2025

Problem 7 continued

12

ECE 374 B Midterm 2 Fall 2025

EXTRA CREDIT (1 pt)
We know Richard E. Bellman is one of the authors of the Bellman-Ford algorithm but he came up

earlier in lectures as the father of this computing paradigm. What is the computing paradigm he
introduced?

EXTRA CREDIT (1 pt)

Name a office hour time (Day of week+time) and the TA or CA that hosts that OH time.
TA/CA name:

OH time:

13

ECE 374 B Midterm 2 Fall 2025

This page is for additional scratch work!

14

ECE 374 B Midterm 2 Fall 2025

This page is for additional scratch work!

15

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

+ Reduction: solve one problem using the solution to another.

- Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

m - Problem instance of size n is reduced to one or more in-
stances of size n — 1 or less.

- For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the first peg to the last peg.

Hanoi (n, src, dest, tmp):
if (n > 0) then
Hanoi (n — 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n — 1, tmp, dest, src)

Tower
of Hanoi

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Algorithm Runtime Space
Sorting O(nlogn)
ffagy Mergesort | O(nlogn) O(n) (if optimized)
rithms ; O(n?)

Quicksort O(nlog n) if using MoM Ol

We can divide and conquer multiplication like so:

n/2

be =10"brcr, + 10" “(brcr + brer) + brer.

We can rewrite the equation as:
Karatsuba's
be = b(z)c(z) = (bpw + br)(cLw + cr) = (bpep)z? algorithm
+ ((br + br)(cL + cr) —brer —brer) x
+ brer,

Its running time is O (n'°82 3) = O(n!:°8%).

J

Recurrences

Suppose you have a recurrence of the form T'(n) = rT'(n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = kf(n)wherek <1 T(n) = O(f(n))
Equal: rf(n/c) = f(n) T(n) = O(f(n) - log,n)
Increasing: rf(n/c) = Kf(n)where K > 1 T(n) = O(nlogcr)

Some useful identities:

g = _ n(n+l
- Sum of integers: 37, k = %

1—pntl
1—m

- Geometric series closed-form formula: Y77 ark =a

- Logarithmic identities: log(ab) = loga + logb,log(a/b) = loga —
log b, a'°8c ¥ = pl°8c @ (q, b, ¢ > 1), log, b = log, b/ log, a.

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in some multi-step process and recursing backwards if it doesn't
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

algLISNaive(A[1..n]):
maxmax = 0
for each subsequence B of A do
if B is increasing and | B| > max then
maz = |B]|
return max

On the other hand, we dont need to generate every subsequence;
we only need to generate the subsequences that are increasing:

LIS_smaller(A[1..n],).
if n = 0 then return 0
max = LIS_smaller(A[l..n — 1], x)
if A[n] < z then
max = max {max, 1 + LIS_smaller(A[1..(n — 1)], A[n])}
return max

Linear time selection

The median of medians (MoM) algorithms give a element that is larger than
3's and smaller than J%'s of the array elements. This is used in the linear
time selection algorithm to find element of rank k.

Median-of-medians (A, 7):
sublists = [Aljj+5] for j < 0,5, ..., len(A)]
medians = [sorted (sublist)llen (sublist)/2]
for sublist € sublists]

// Base case
if len (A) < 5 return sorted (a)lil

// Find median of medians
if lLen (medians) < 5

pivot = sorted (medians)llen (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning step
low = [j forj € A if j < pivot]
high = [j for j € A'if j > pivot]

k = len (low)
ifi<k

return Median-of-medians (low, i)
elseifi>k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

azi’!}j + Opt(l - 17.] - 1)7
Opt(i, j) = min { & + Opt(i — 1,4),

5+ Opt (3,5 — 1)

0 ifi=0
LIS(i —1,5) if Ali] > A[j]

LIS(i, 5) =
(4,9) { LIS(i — 1, 5)
max

Base cases: Opt(i,0) = ¢ - ¢ and Opt(0,5) =9 - j
1+ LIS(E—1,1) .9 3)

else

EDIST(A[1..m], B[1..n])
fori < 1tomdo M[i, 0] = id

LIS-lterative(A[L..n]): for j « 1tondo M[0,j] = jé

An+1] =00
forj < Oton

fori—1t
if Alil < Al then LI5[0][j] = 1 ori = 1tom do

for j = 1tondo

fori« lton —1do COST[A[4]] [B]]

forj « iton—1do M[i][j] = min +M[i —1][j — 1],
if Ali] > Alj] 6+ M[i —1][3],
LIS[i,j] = LIS[i — 1,7] 6+ Mlil[5 — 1]
else
LIS[i,j] = max {LIS[i — 1, 4],
1+ LIS[i—1,i]}
return LIS[n,n + 1]

2 Graph algorithms
Graph basics

A graph is defined by a tuple G = (V, E) and we typically define n = |V | and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

-+ path: sequence of distinct vertices vy, va, . .
Note: a single vertex w is a path of length 0.

., v suchthat v;v; 41 € Eforl < ¢ < k — 1. The length of the pathis k& — 1 (the number of edges in the path).

- cycle: sequence of distinct vertices v1, va, . .., vi such that (v;,v,41) € Eforl < i < k —1and (vg,v1) € E. Asingle vertex is not a cycle according to

this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

+ A vertex u is connected to v if there is a path from w to v.
+ The connected component of u, con(u), is the set of all vertices connected to w.
+ A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from w. Let rch(u) be the set of all vertices reachable from w.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.

A topological ordering of adag G = (V, E) is an ordering < on V such that
if (u,v) € Ethenu < v.

Strongly connected components
T I T GSCC

O—=0

©)
O—0

+ Given G, u is strongly
connected to v if v €
rch(u) and w € rch(v).

- A maximal group ofG:
vertices that are all
strongly connected to
one another is called a
strong component.

Kahn(G(V, E)u):
toposort<—empty list
forv e V:
in(v) < [{u|u—veE}
while v € V that has in(v) = 0:
Add v to end of toposort
Remove v from V/

Metagraph(G(V, E)):
Compute rev(G) by brute force
ordering < reverse postordering of V' in rev(G)

forvinu — v € E:
in(v) « in(v) — 1
return toposort

Running time: O(n + m)

- A dag may have multiple topological sorts.

-+ A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each w in ordering do
if u is not visited and v € V then
Su < nodes reachable by u by DFS(G, u)
Output S, as a strong connected component
G(V,E) «+ G- S,

Running time: O(m + n)

\

DFS and BFS Shortest paths

\

Explore(G,u):
fori < lton:
Visited[i] < False
Add u to ToExplore and to S
Visited[u] + True
Make tree T with root as u
while ToExplore is non-empty do
Remove node z from ToExplore
for each edge (z, y) in Adj(x) do
if Visited[y] = False
Visited[y] < True
Add y to ToExplore, S, T (with x as parent)

-+ If Bis a queue, Explore becomes BFS.
- If Bis a stack, Explore becomes DFS.

Running time: O(m + n)

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

+ Forward edge: pre(u) < pre(v) < post(v) < post(u)
+ Backward edge: pre(v) < pre(u) < post(u) < post(v)
+ Cross edge: pre(u) < post(u) < pre(v) < post(v)

Minimum Spanning Tress

- Tree = undirected graph in which any two vertices are connected by ex-
actly one path.

+ Sub-graph H of G is spanning for G, if G and H have same connected
components.

+ A minimum spanning tree is composed of all the safe edges in the graph

- Anedge e = (u,v) is a safe edge if there is some partition of V into S
and V' \ S and e is the unique minimum cost edge crossing S (one end in
S and the other in V' \ S).

+ An edge e = (u,v) is an unsafe edge if there is some cy-
cle C such that e is the unique maximum cost edge in C.

Tis @ (" T will store edges of a MST)
while T is not spanning do
X<+ o
for each connected component S of T do
add to X the cheapest edge between Sand V' \ S
Add edgesin X toT
return the set T’

Running time: O (mlog (n))

Sort edges in E based on cost
Tisempty (x T will store edges of a MST *)
each vertex u is placed in a set by itself
while E is not empty do
pick e = (u,v) € E of minimum cost
if w and v belong to different sets
addeto T
merge the sets containing w and v
return the set T’

Running time: O ((m + n) log (m)) if using union-find data structure

T+ 2,58+ 3 s+ 1
Yo € V (G) : d(v) + o0,p(v) + &
d(s) <+ 0
while S # V do
v = argmin,cy\ g d(u)
T =T U {op(v))

S=SuU{v}
for each u in Adj(v) do
d(u) < min d(w)
c(vu)
if d(u) = c(vu) then
p(u) < v
return T’

Running time: O (nlog (n) 4+ m) if using Fibonacci heaps

Dijkstra's algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

forv € V do

d(v) « oo
X<+ o
d(s,s) <0
fori < 1tondo

v < argmin, oy x d(u)

X =X U{v}

for u in Adj(v) do

d(u) + min {(d(u), d(v) + £(v,u))}

return d

Running time: O (m+nlogn) (if using a Fibonacci heap as the priority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:
0 ifv=sandk =0
if andk =0
.k =1 i d(u, k— 1 ve#s
min { M0uver {dlu k=1 +&u,0)} o
d(v,k —1)
Base cases: d(s,0) = 0and d(v,0) = oo forallv # s.

foreachv € V do
d(v) + oo
d(s) < 0
fork «+ 1ton — 1do
foreachv € V do
for each edge (u, v) € in(v) do
d(v) < min{d(v), d(u) + €(u,v)}

return d

Running time: O (nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

0 ifi =7
o == if (i,7) ¢ Bandk =0
A0 = .{d(i,j,k—l)

min

[:
Gk, k — 1)+ d(k, gk — 1) S0

Then d(i,j,n — 1) will give the shortest-path distance from i to j.

Metagraph(G(V, E)):
fori € V do
forj € V do
d(i, 5,0) « £(i, 4)
(* £(i,j) < oo if (i,5) ¢ E, 0 if i =7j *)

fork + 0ton — 1do

fori € V do
forj € Vdo
o - fdg, g,k —1),
COIRS mm{d(i, ko — 1) + d(k, j,k — 1)
forv € V do

if d(¢,4,n — 1) < 0 then
return "3 negative cycle in G*

returnd(-, -, n — 1)

Running time: ©(n?)

	Short answer - 15 points
	Short answer (Recursion+DP) - 15 points
	Short answer (Graphs) - 20 points
	Dynamic programming - 15 points
	Graphing Algorithms - 15 points
	Minimum Spanning Trees - 10 points
	Recursion + Dynamic Programming + Graphs - 10 points

