
ECE 374 B Midterm 3 Fall 2023

1 Short Answer I (8 questions) - 16 points

For each of the problems circle true if the statement is always true, circle false otherwise. There is
no partial credit for these questions.
(a) If A is a NP-Complete language and B is a NP-Hard language, then A≤P B.

Solution: True False

�

(b) If A is a NP-Complete language then A≤P SAT and SAT ≤P A.

Solution: True False

�

(c) If A≤P B and B is NP-Complete, then A is NP-Complete.

Solution: True False

�

(d) If A≤P B and A is NP-Complete, then B is NP-Complete.

Solution: True False

�

(e) Every decidable language is in NP.

Solution: True False

�

(f) All NP problems are recursively enumerable.

Solution: True False

�

(g) Every regular language is in P

Solution: True False

�

(h) If A and B are both in NP, then A≤P B

Solution: True False

�

1



ECE 374 B Midterm 3 Fall 2023

2 Short Answer II (3 questions) - 9 points

For each of the problems circle all the answers that apply. There is no partial credit for these
questions. Points are not necessarily divided evenly among all possible choices.

(a) Assume X is the problem that finds the hamiltonian cycle of minimum length given a directed,
weighted graph G. Circle the complexity classes this problem belongs to:

Solution: P NP NP-hard NP-complete

decidable undecidable

�

(b) The Tautology problem is the problem of determining if a 3SAT evaluates to true under every
possible assignment to its variables. Tautology belongs to:

Solution: P NP NP-hard NP-complete

decidable undecidable

�

(c) Recall the primality problem is problem of determining if a number (n) is prime (has factors
< n). Primality belongs to:

Solution: The original intent of this problem was to ask about integer factorization
since that is what we discussed in class, but unfortunately we used the wrong term in
the question. This solution is technically wrong, but we’re giving it full marks since most
people interpreted the way it was intended. As a NP (but not NP-complete) problem.

P NP NP-hard NP-complete

decidable undecidable

�

Solution: The question as written is in P because there exists a polynomial time algorith
to determine primality (AKS primality test). KTudos to everyone who saw that even
though we didn’t specifically discuss it in this course/

P NP NP-hard NP-complete

decidable undecidable

2



ECE 374 B Midterm 3 Fall 2023

�

3



ECE 374 B Midterm 3 Fall 2023

3 Classification I (P/NP) - 15 points

Is the following problem in P, NP, or some combinations of complexity classes? For each of the
following problems, circle all the complexity classes that problem belongs to. Whatever class it is
in, prove it!

The 374 path problem (374P) asks given an undirected graph G, does G contain a path that visits
atleast 374 vertices.

• Input: A graph G.

• Output: True if there exists a path that is at least 374 vertices long. False otherwise.

Which of the following complexity classes does this problem belong to? Circle all that apply:

Solution: P NP NP-hard NP-complete
To prove that the 374 Path problem is in P we need to come up with an polynomial-time

algorithm that solves the problem. There are many polynomial solutions and one of them is
listed below.

The first thing to realize is that if there exists a path that is > 374 vertices long, then
there is a path that is 374 vertices long. Hence, to solve this problem we simply need to
know if there exists a path with 374 vertices. The number of possible paths with 374 vertices
is n374 (you choose one of n vertices for every spot in the path).

Hence, to solve this problem you simply check each of the n374 paths to make sure if
there is a edge between every one of the adjacent vertices. If there is, it means that path
exists in the graph. This takes O(n) time for each path. Therefore the brute force approach
takes O(n ∗ n374) = O(n375) which is polynomial time.

As the 374P is solvable in polynomial time, thereby classifying it within P, we state that
it inherently qualifies as a member of the NP class as well.

Additionally, we can prove that a problem is in NP if we can prove that the solution
or a YES instance of the problem can be verified in polynomial time. For 374P, given a
specific path of at, we can easily check in polynomial time whether this path is valid solution.
Imagine a ’certifier’ that takes a proposed path as a ’certificate’. The certifier then checks
if each consecutive pair of vertices in the path is connected by an edge in the graph and
checks if the count of vertices in the path is > 374. This process would take linear time
relative to the length of the path, which is a polynomial-time operation.

Note: Most of you believed this to be NP-complete because it looks similar to the
longest path problem. The reason this doesn’t work is that you have to show the reduction
LongestPath ≤P 374P. In other words, for the <= direction you have to determine if a
graph has a path of weight > k using a machine that only tells you if the graph has a path
with more than 374 vertices. I don’t think that is possible (definitely not in polynomial
time).

Additionally, there’s a common misconception regarding the classification of problems as
NP, that if a problem can be reduced from an NP-complete problem, it automatically belongs
to NP. This is incorrect. While such a reduction does indicate the hardness of the problem, it
doesn’t confirm its membership in NP. To categorically place a problem in NP, we need to

4



ECE 374 B Midterm 3 Fall 2023

establish the existence of a polynomial-time verifier or certifier as given above.
�

5



ECE 374 B Midterm 3 Fall 2023

4 Classification II (P/NP) - 15 points

Is the following problem in P, NP, or some combinations of complexity classes? For each of the
following problems, circle all the complexity classes that problem belongs to. Whatever class it is
in, prove it!

The multi-solution SAT (MultiSAT) problem asks whether a SAT problem has multiple satisfiable
truth assignments.

• Input: A SAT formula φ.

• Output: True if there exists atleast two distinct variable assignments that satisfy this
formula. False otherwise.

Which of the following complexity classes does this problem belong to? Circle all that apply:

Solution: P NP NP-hard NP-complete

To show NP-hard, we need to reduce a known NP-hard problem to MultiSAT. Given
that this is a SAT variant, the obvious reduction would be SAT≤P MultiSAT. So we need
to transform an instance of SAT (φ) into an instance of MultiSAT (φM) so that if φ is
satisfiable, then φM is satisfiable and if φ is not satisfiable, then φM is also not satisfiable.

Basically we just got to double the number of satisfying assignments in φ. An easy way
to do this is by adding variable x to φM and saying φM = φ ∧ (x ∨ x). Therefore, whatever
satisfying assignment φ has, φM also has with x equal to 0 or 1.

To prove the problem is in NP you have to show that a YES instance is checkable in
polynomial time. In this case we can simply define a certificate that is a variable assignment
and a certifier which traverses φM and makes sure all the clauses have atleast one literal
which is true.

Common mistake: Notice that we want that when φ has one satisfying assignment,
φM has at least 2. Not that when φM has a satisfying assignment, φ has at least 2. Because
if we do that, we are reducing from MultiSAT to SAT. A common modification attempted
like this is φM = φ ∧

�

φ̂
�

which doesn’t work for multiple reasons.
�

6



ECE 374 B Midterm 3 Fall 2023

5 Classification III (P/NP) - 15 points

Is the following problem in P, NP, or some combinations of complexity classes? For each of the
following problems, circle all the complexity classes that problem belongs to. Whatever class it is
in, prove it!

HALTT M you are given a turing machine 〈M〉 and must determine if it halts on a empty input.

• Input: A TM 〈M〉.

• Output: True if the will halt on an empty input. False otherwise.

Which of the following complexity classes does this problem belong to? Circle all that apply:
You must justify (prove) your answer!

Solution: P NP NP-hard NP-complete

Right off the bat, we know HALT is undecidable so it is probably not in P or NP or
NP-complete.

Now we just got to prove it is NP-hard. We can do this the same way we prove any other
problem is NP-hard, reduction from a known NP-hard problem.

Probably the easiest way to do this is to show a SAT≤P HALT. We can construct a TM
that does the following:

M ′(x):
Loop trying every variable assignment on φ

if φ is satisfied
return TRUE

Loop forever
M ′ only halts if φ is satisfiable. Hence, we can use the oracle for HALT to determine if φ

is satsisfiable or not. The reduction only requires us to encode the TM which takes constant
time and hence, HALT is Np-hard.

�

7



ECE 374 B Midterm 3 Fall 2023

6 Classification I (Decidability) - 15 points

Are the following languages decidable? For each of the following languages,

• Circle one of "decidable" or "undecidable" to indicate your choice.

• If you choose "decidable", prove your choice correct by describing an algorithm that decides
that language. If you choose "undecidable", prove your choice correct by giving a reduction
proving its correctness.

• Regardless of your choice, explain briefly (i.e., in 3 sentences maximum, diagrams, clear
pseudo-code) why the proof of the choice you gave is valid.

ReachQT M =
�

〈M , w, q〉 | M is a TM
�

= 〈Q,Σ, Γ ,δ, q0, qacc , qre j〉
�

and will enter state q ∈Q, on input w
	

Σ= {0,1}

Solution: decidable undecidable

This is similar to a lab and lecture question and we do a reduction from the accept
language:

AT M ⇒ ReachQT M

The reduction is as follows. We can simply find every accepting state in M (input to
AT M) and run the oracle for ReachQT M to see if it reaches that accept state. Doing this for
every accept state in M will tell you if M accepts w (i.e the thing AT M is looking for).

DECAT M (M , w):
∀ q in qacc

if ORACReachQT M
(< M , w, q >)

return TRUE
return FALSE

Clearly this reduction is valid and therefore ReachQ is atleast as hard as AT M . Since
AT M is undecidable, ReachQ must also be undecidable.

�

8



ECE 374 B Midterm 3 Fall 2023

7 Classification II (Decidability) - 15 points

Are the following languages decidable? For each of the following languages,

• Circle one of "decidable" or "undecidable" to indicate your choice.

• If you choose "decidable", prove your choice correct by describing an algorithm that decides
that language. If you choose "undecidable", prove your choice correct by giving a reduction
proving its correctness.

• Regardless of your choice, explain briefly (i.e., in 3 sentences maximum, diagrams, clear
pseudo-code) why the proof of the choice you gave is valid.

Accept374T M = {〈M , w〉 | M is a TM and accepts w in 374 steps. }

Σ= {0,1}

Solution: decidable undecidable

Pretty much exactly a lab/lecture problem. Since there is a upperbound to the number
of steps, you can simply run the Turing machine for 374 steps. If it accepts, then accept,
otherwise reject. There is no possibility to loop forever and therefore, the problem(language)
is decidable. �

9


	Short Answer I (8 questions) - 16 points
	Short Answer II (3 questions) - 9 points
	Classification I (P/NP) - 15 points
	Classification II (P/NP) - 15 points
	Classification III (P/NP) - 15 points
	Classification I (Decidability) - 15 points
	Classification II (Decidability) - 15 points

