ECE-374-B: Algorithms and Models of Computation, Fall 2022 Midterm 1 - September 22, 2022

- You can do hard things! Grades do matter, but not as much as you may think, but then life is uncertain anyway, so what.
- Don't cheat. The consequence for cheating is far greater than the reward. Just try your best and you'll be fine.
- Please read the entire exam before writing anything. There are 4 problems and most have multiple parts.
- This is a closed-book exam. At the end of the exam you'll find a multi-page cheat sheet. Do not tear out the cheatsheet! No outside material is allowed on this exam.
- You should write your answers legibly and in the space given for the question. Overly verbose answers will be penalized.
- Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It messes with the auto-scanner.
- You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend too much time on questions you do not understand and focus on answering as much as you can!
- Proofs are required only if we specifically ask for them. Even then, none of the questions require long inductive proofs. You are only required to give a short explanation of why your answer is correct.

Name: \qquad

NetID: \qquad

Date: \qquad

1 Short Answer(3 parts) - 40 points

No explanation is required for your answers for full credit. Keep any explanations of your answers to 2 sentences maximum.
a. Consider the inductive definition of a language Mystery:

- $0 \in$ Mystery
- If $w \in$ Mystery, then $w 1 \in$ Mystery
- If $w \in$ Mystery, then $0 w \in$ Mystery

Give a regular expression for this language.
b. Consider the following context free grammar:

$$
\begin{aligned}
& S \rightarrow A B \mid B \\
& A \rightarrow \epsilon \mid \mathrm{a} A \\
& B \rightarrow \mathrm{~b} B \mathrm{c} \mid \mathrm{bc}
\end{aligned}
$$

Show a sequence of rules that can be used to derive aabbcc
c. Suppose L_{R} is a regular language, L_{NR} is a non-regular language, and we want to examine a new language L.

Which of the following claims are necessarily true? For each claim that is not necessarily true, give a counter example. A counter example must specify L, L_{NR}, and L_{R}.
i. If $L=L_{N R} \cap L_{\mathrm{R}}$, then L is regular.
ii. If $L_{\mathrm{NR}}=L \cap L_{\mathrm{R}}$, then L is non-regular.
iii. If $L_{\mathrm{R}}=L_{\mathrm{NR}} \cap L$, then L is non-regular.

2 Language Transformation-20 points

Let $\Sigma=\{0,1\}$ and let L be an arbitrary regular language over Σ.
Define the operation TwoIsWild (L) as follows:

$$
\operatorname{TwoIsWild}(L)=\{a b x \mid a \in \Sigma, b \in \Sigma, a c x \in L \text { for some symbol } c \in \Sigma\} .
$$

To summarize in words, every string (of length 2 or longer) in L is also in $\operatorname{TwoIsWild}(L)$. Additionally, you can take any string w from L, change the 2nd character to anything you want, and the resulting string will be in TwoIsWild (L).

Show that TwoIsWild (L) is regular by constructing an NFA. You may assume a DFA for L exists as $(Q, \Sigma, \delta, s, A)$.

3 Language classification I (2 parts) - 20 points

Let $\Sigma=\{0,1\}$ and

$$
L_{3}=\{w \mid \text { w contains a even number of 0's and odd number of 1's }\} .
$$

1. Is L_{3} regular? Indicate whether or not by circling one of the choices below. Either way, prove it.
regular not regular
2. Is L_{3} context-free? Indicate whether or not by circling one of the choices below. Either way, prove it.
context-free not context-free

4 Language classification II (2 parts) - 20 points

Let $\Sigma=\{0,1\}$ and

$$
L_{4}=\{w \mid \text { w contains a equal number of 0's and 1's }\} .
$$

1. Is L_{4} regular? Indicate whether or not by circling one of the choices below. Either way, prove it.
regular not regular
2. Is L_{4} context-free? Indicate whether or not by circling one of the choices below. Either way, prove it.
context-free not context-free

This page is for additional scratch work!

ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

$$
\begin{array}{ll}
\text { Strings } \\
& \\
& \text {. The length of a string } w \text { (denoted by }|w| \text {) is the number } \\
& \text { of symbols in } w .
\end{array} \quad \begin{aligned}
& \text { • For integer } n \geq 0, \Sigma^{n} \text { is set of all strings over } \Sigma \text { of length } \\
& \\
& n . \Sigma^{*} \text { is the set of all strings over } \Sigma .
\end{aligned}
$$

If x and y are strings then $x y$ denotes their concatenation. Recursively:

- $x y=y$ if $x=\varepsilon$

$$
-x y=a(w y) \text { if } x=a w
$$

v is substring of $w \Longleftrightarrow$ there exist strings x, y such that $w=x v y$

String

operations

- If $x=\varepsilon$ then v is a prefix of w
- If $y=\varepsilon$ then v is a suffix of w
- A subsequence of a string $w=w_{1} w_{2} \ldots w_{n}$ is either a subsequence of $w_{2} \ldots w_{n}$ or w_{1} followed by a subsequence of $w_{2} \ldots w_{n}$.
- If w is a string then w^{n} is defined inductively as follows: $w^{n}=\varepsilon$ if $n=0$ or $w^{n}=w w^{n-1}$ if $n>0$

2 Overview of language complexity

| Overview | | |
| :--- | :--- | :--- | :--- |

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

- union,
- concatenation or
- Kleene star
finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language

A regular expression \mathbf{r} over an alphabet Σ is one of the following:
Base cases:

- \varnothing the language \varnothing
- ε denotes the language $\{\varepsilon\}$
- a denote the language $\{a\}$

Inductive cases: If $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are regular expressions denoting languages L_{1} and L_{2} respectively (i.e., $L\left(\mathbf{r}_{1}\right)=L_{1}$ and $L\left(\mathbf{r}_{2}\right)=L_{2}$) then,

- $\mathbf{r}_{1}+\mathbf{r}_{2}$ denotes the language $L_{1} \cup L_{2}$
- $\mathbf{r}_{1} \mathbf{r}_{2}$ denotes the language $L_{1} L_{2}$
- \mathbf{r}_{1}^{*} denotes the language L_{1}^{*}

Examples:

- 0^{*} - the set of all strings of 0 s , including the empty string
- $(00000)^{*}$ - set of all strings of $0 s$ with length a multiple of 5
- $(0+1)^{*}$ - set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by an NFA N is denoted $L(N)$ and defined as $L(N)=\{w \mid N$ accepts $w\}$.

A nondeterministic finite automaton (NFA) $N=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)
- s and Σ are the same as in DFAs

Example:

$$
\begin{aligned}
& \text { • } Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \text { - } \Sigma=\{0,1\}
\end{aligned}
$$

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$, the ε-reach (q) is the set of all states that q can reach using only ε-transitions.
Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\varepsilon$-reach (q)
- if $w=a$ for $a \in \Sigma, \quad \delta^{*}(q, a)=\bigcup_{p \in \varepsilon \text {-reach }(q)} \delta(p, a)$
- if $w=a x$ for $a \in \Sigma, x \in \Sigma^{*}$:

$$
\delta^{*}(q, w)=\bigcup_{p \in \varepsilon-\operatorname{reach}(q)} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)
$$

Regular closure

Regular languages are closed under union, intersection, complement, difference, reversal, Kleene star, concatenation, etc

Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by $L(M)$ and defined as $L(M)=\{w \mid M$ accepts $w\}$

A deterministic finite automaton (DFA) $M=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $s \in Q$ is the start state
- $A \subseteq Q$ is the set of accepting/final states

Example:

$$
\begin{aligned}
& \text { - } Q=\left\{q_{0}, q_{1}\right\} \\
& \text { - } \Sigma=\{0,1\} \\
& \text { - } \delta: \begin{array}{l|ll}
& 0 & 1 \\
\hline q_{0} & q_{1} & q_{0} \\
q_{1} & q_{0} & q_{1} \\
\text { - } s=q_{0} \\
\text { - } A=\left\{q_{0}\right\}
\end{array}
\end{aligned}
$$

Every string has a unique walk along a DFA. We define the extended transition function as $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows:

- $\delta^{*}(q, w)=q$ if $w=\varepsilon$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Can create a larger DFA from multiple smaller DFAs. Suppose

- $L\left(M_{0}\right)=\{w$ has an even number of $0 s\}$ (pictured above) and
- $L\left(M_{1}\right)=\{w$ has an even number of 1 s$\}$
$L\left(M_{C}\right)=\{w$ has even number of 0 s and 1 s$\}$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.

Arden's rule: If $R=Q+R P$ then $R=Q P^{*}$

Fooling sets

$$
\begin{aligned}
& \text { Some languages are not regular (Ex. } L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text {). } \\
& \text { Two states } p, q \in Q \text { are distinguish- } \\
& \text { able if there exists a string } w \in \Sigma^{*} \text {. } \\
& \text { such that } \\
& \qquad \begin{array}{l}
\text { Two states } p, q \in Q \text { are equivalent if } \\
\text { for all strings } w \in \Sigma^{*} \text {, we have that }
\end{array} \\
& \qquad \delta^{*}(p, w) \in A \text { and } \delta^{*}(q, w) \notin A . \\
& \text { or } \\
& \qquad \delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A . \\
& \delta^{*}(p, w) \notin A \text { and } \delta^{*}(q, w) \in A . \\
& \text { For a language } L \text { over } \Sigma \text { a set of strings } F \text { (could be infinite) is a fooling set or } \\
& \text { distinguishing set for } L \text { if every two distinct strings } x, y \in F \text { are distinguish- } \\
& \text { able. }
\end{aligned}
$$

4 Context－free languages

Context－free languages

A language is context－free if it can be generated by a context－free grammar． A context－free grammar is a quadruple $G=(V, T, P, S)$
－V is a finite set of nonterminal（variable）symbols
－T is a finite set of terminal symbols（alphabet）
－P is a finite set of productions，each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^{*}$ Formally，$P \subseteq V \times(V \cup T)^{*}$ ．
－$S \in V$ is the start symbol
Example：$L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$ is described by $G=(V, T, P, S)$ where V, T, P and S are defined as follows：
－$V=\{S\}$
－$T=\{0,1\}$
－$P=\{S \rightarrow \varepsilon|0 S 0| 1 S 1\}$
（abbreviation for $S \rightarrow \varepsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$ ）
－$S=S$

Pushdown automata

A pushdown automaton is an NFA with a stack．
The language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is recognized by the pushdown au－ tomaton：

A nondeterministic pushdown automaton（PDA）$P=(Q, \Sigma, \Gamma, \delta, s, A)$ is a six tuple where
－Q is a finite set whose elements are called states
－Σ is a finite set called the input alphabet
－Γ is a finite set called the stack alphabet
－$\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is the transition function
－s is the start state
－A is the set of accepting states
In the graphical representation of a PDA，transitions are typically written as〈input read〉，〈stack pop〉 \rightarrow 〈stack push \rangle ．
A CFG can be converted to a pushdown automaton．

The PDA to the right recog－ nizes the language described by the following grammar：
$S \rightarrow 0 S|1| \varepsilon$

Context－free closure

Context－free languages are closed under union，concatenation，and Kleene star．
They are not closed under intersection or complement．

