
ECE 374 B Midterm 2 Spring 2023

1 Short answer (2 questions) - 22 points

Answer the following questions. Briefly justify your answers, but a complete proof is not required.

(a) [XX points] Give a tight asymptotic bound for the following recurrences :

(i)

A(n) = 2A
�n

2

�

+ n3 A(0) = A(1) = 1

Solution: We can model this recurrence as a recursion tree as follows:

n3

n3

8
n3

8

n3

64
n3

64
n3

64
n3

64

At the root, the work sums up to n3. At level 2, the work sums up to 1
4 n3. At

level 3, the work sums up to 1
16 n3. The amount of work is decreasing at each

level. Hence, the overall recurrence is dominated by the root node. Therefore,
the asymptotic bound is O(n3). �

(ii)

B(n) = B(n− 2) + n2 B(0) = B(1) = 1

Solution: Let us unroll the above recurrence:

B(n) = B(n− 2) + n2

= B(n− 4) + (n− 2)2 + n2

= B(n− 6) + (n− 4)2 + (n− 2)2 + n2

· · ·

= B(n− k) +
k−2
∑

i=0;i+=2

(n− i)2

= B(0) +
k−2
∑

i=0;i+=2

(n− i)2 = 1+
n
∑

m=1

m2

= 1+ n(n+ 1)(2n+ 1)/6

As we just need the asymptotic upper bound, we simplified the expression in line
5 and considered sum of squares of natural numbers. Therefore, the asymptotic

1

ECE 374 B Midterm 2 Spring 2023

bound is O(n3). �

Solution: TLDR explanation:

• Number of levels: n
• Work on each level: n2

Asymptotic bound: O
�

n3
�

�

(b) We developed a new type of algorithm to sort a set of (non-numerical) elements. It sorts
a set of size n elements by dividing them into nine sub-problems of size n/3, recursively
solving each subproblem, and then combining the solutions in O(n2) time. What is the
asymptotic running time of this algorithm?

Solution: The recurrence relation for the above can be written as:

T (n) = 9T
�n

3

�

+ n2

We can model this recurrence as a recursion tree as follows:

n2

n2

9
n2

9
. . .

n2

9

n2

81
. . .

n2

81
n2

81
. . .

n2

81
. . .

n2

81
. . .

n2

81

At each level, the nodes sum up to n2. The maximum depth of the tree is log n.
Therefore, we have log n levels with n2 work per level, so the asymptotic running time
is O(n2 log n). �

2

ECE 374 B Midterm 2 Spring 2023

2 Short answer II (4 questions) - 28 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your answers,
but a complete proof is not required. For the following graph problems, use the notation
G = (V, E), n= |V | and m= |E|

(a) How many strongly connected components does a directed acyclic graph (DAG) have?

Solution: Each node in a DAG is a strongly connected components on its own as there
are no cycles in the graph. Hence, for a DAG G=(V,E), it has exactly |V| strongly
connected components. �

(b) In the Floyd-Warshall (found in the cheat sheet), we defined a recurrence d(i, j, k). Give an
English description (no more than 2 sentences) of what d(i, j, k) represents.

Note: what’s in the cheat sheet does not constitute a english description for the recurrence.

Solution: Assuming all the vertices are numbered 1 through n, d(i, j, k) represents the
shortest path from i to j using only vertices 1 through k. �

Solution: For FloydWarshalls algorithm, the recurrence d(i, j, k) represents the shortest
path from node i to node j with k as the intermediate node in between the path from i
to j. That is, it represents the shortest path for i→ j where you traverse from i→ k and
then from k→ j. �

3

ECE 374 B Midterm 2 Spring 2023

(c) Given n vertices, what is the minimum number of edges one would need to create a graph
with exactly one topological sort.

Solution: A unique toplogical sort would have all edges directed from a lower level
to a higher level in the graph. After designating a source and sink vertex we chose
consequent vertices to link each vertices one after the other starting from the source
and ending with sink where all the other vertices have exactly an incoming edge and
an outgoing edge each. This can be done in eactly n-1 edges. �

(d) Your friend says he discovered a better way of calculating the shortest path in graphs
with negative weight edges. All we need to do is find the minimum edge weight w∗ =
min{w(u, v)|(u, v) ∈ E} and add it to all the other edges in the graph ŵ= w(u, v)−w∗.

Now that the edges are all positive weight, you can use Djikstra and find the shortest path.
Does this method of re-weighting work? Either prove the correctness of the method or
provide a counter example (and briefly explain the counter example).

Circle one: Yes(re-weighting works) No (re-weighting does not work)

Solution: This would NOT work as the paths that have more edges would essentially
have more weight per edge added to it. Let’s say there were two paths from a to c :
1.a− > b− > c = −3+ 5 = 2 and 2.a− > d− > e− > c = −3+ 1+ 3 = 1 and path 1 is
the shortest. Now adding the smallest edge weight to all edges would result in the path
1 length becoming 2+ 2(3) = 8 and path 2 length as 1+ 3(3) = 10 thereby changing
the shortest path to path 1 which is wrong. (Rough solution; will be adding a diagram
later if needed) �

4

ECE 374 B Midterm 2 Spring 2023

3 Finding a plurality - 15 points

Given an arbitrary array A[1..n], describe an algorithm to determine in O(n) time whether A
contains more than n/4 copies of any value. Do not use hashing, or radix sort, or any other
method that depends on the precise input values.

Solution: This problem was a direct duplicate of a HW and lab problem. Only a brief
explanation was required:

• For a array to have an element that appears n/4 times, then that element must appear
in the rank n/4, n/2 or 3n/4 spot.

• we can use Linear time selection (QuickSelect + MoM) to find the elements of rank 0,
n/4, n/2, 3n/4 and n.

• Then we loop over the array once for each of those values and see how many times
each of those elements appears. If one of those elements appears > n/4 times, we
return yes, otherwise no.

The average for this problem was 62% and that’s giving substantial credit for sub-optimal
(sort-based) solutions. Only 31% of students used anything resembling linear time selection.
I can’t help but think that maybe certain course policies are doing more harm than good?
Looking at that 31% number (and the fact that groups of three are allowed for homeworks),
suggests that the vast majority of groups are simply divvying assignments which is sad.... �

Solution: Longer explanation: The algorithm is formally described below. We use the
fact that the selection problem can be solved in linear time. That is, given an unsorted array
A of n values and an index j between 1 and n, we can find the j-th ranked element in A
in O(n) time. We denote this black box algorithm as Select(A[1..N], j) which returns the
value of the j-th ranked element in A. To determine whether an element appears more
than n/4 times, we select values with rank n/4, 2n/4, and 3n/4. If an element x appears
more than n/4 times, it follows that at least one of these selected values is equal to x .
Thus, we can scan and count the number of occurrences of each of these selected values.

Contains4Duplicates(A[1 .. N])
x1← Select(A, dN/4e)
x2← Select(A, d2N/4e)
x3← Select(A, d3N/4e)
for (i← 1 : 3)

count← 0 for (j← 1 : N)
if (A[j] = x i) then count++1

if (count> N/4) then return True
return False

Since Select runs in O(n) time, finding x1, x2, and x3 also takes O(n) time. Looping over
the array of length n a total of 3 times takes O(n) time. Thus, this algorithm runs in the
required O(n) time.

To prove correctness of the algorithm, we must show that if an element appears more
than n/4 times, it must be at least one of the selected values with rank dn/4e, d2n/4e, or

5

ECE 374 B Midterm 2 Spring 2023

d3n/4e. Assume an element x appears i > n/4 times. Then, there must be consecutive
ranks j, ..., j + i − 1 with value x . Without loss of generality, consider the number of values
of rank between dn/4e and d2n/4e (excluding the outside values). Since dn/4e ≥ n/4 and
d2n/4e ≤ 2n/4+1, the maximum number of values is given by (2n/4+1)−(n/4)−1= n/4.
Thus, there are at most only n/4 spots for more than n/4 values. By pigeonhole principle,
one of the selected values must be equal to x . �

6

ECE 374 B Midterm 2 Spring 2023

4 Dynamic programming - 15 points

A common subsequence of three strings X , Y , Z is a string that is a subsequence of each of X , Y ,
and Z . Describe a DP algorithm that returns the length of the longest common subsequence of
X [1..n], Y [1..n], and Z[1..n] by providing the following.

Solution: This is simply the edit-distance/longest-common-subsequence problem I spent
Lecture 14 describing.

Recurrence and short English description(in terms of the parameters):

LCS(i, j, k) =

0 if i = 0 or j = 0 or k = 0

1+ LCS(i − 1, j − 1, j − 1) if X [i] = Y [j] = Z[k]

max

LCS(i − 1, j, k)
LCS(i, j − 1, k)
LCS(i, j, k− 1)

otherwise

Where LCS(i, j, k) denotes the length of the longest common subsequence of X [1..i], Y [1.. j],
Z[1..k].

Memoization data structure and evaluation order: The data structure would be a
3-dimensional n by n by n array. We evaluate in increasing order(from index 1 to n) for all
three dimensions.

Return value: LCS(n, n, n), which is the longest common subsequence of X [1..n], Y [1..n],
Z[1..n].

Time Complexity: O(n3), because of the nested loops over i, j, k.
�

7

ECE 374 B Midterm 2 Spring 2023

5 Graph algorithms (2 questions) - 20 points

For the graph problems, assume that the graph is represented by adjacency lists with outgoing
edges only – that is, for each vertex u in the graph, you know Out(u), which stores outgoing
edges from vertex u.

Assume you had a directed acyclic graph with one edge marked as important. A important
path is a path that contains this one important edge.

Assume all the edges have the same weight `(e) = 1.

(a) Describe an algorithm that finds the shortest important path (not just path length) from s
to t.

Solution: To find the shortest important path we find the shortest path from s to the
beginning of the important edge, node u. Then the shortest path from the end of the
important edge, node v, to t. When these 2 paths are added together with the important
edge the result is the shortest important path from s to t.

To find the shortest path from s to u we use a modified BFS. This modified BFS
keeps track of the parent node and as soon as u is reached it ends the while loop. Then
starting with u it adds parent nodes until it reaches s. BFS finds the shortest path
because all edges have the same weight.

Do the same for the shortest path from v to t.

Then we concatenate these 2 paths together to get the shortest important path.

Let e be the important edge, V the node list, Out be the adjacency list, s be the start
node, and t be the destination node.

ImportantPath(G(V, Out), e, s, t):
u← outNode(e)
v← inNode(e)
pathsu← PathBFS(G(V, Out), s, u)
pathvt← PathBFS(G(V, Out), v, t)
pathst← empty
if pathsu and pathvt are non-empty

pathst← concatenate(pathsu,pathvt)

return pathst

8

ECE 374 B Midterm 2 Spring 2023

PathBFS(G(V, Out), x , y):
for v in V

visited(v)← false
N← x
visited(x)← true
while N is non-empty and visited(y) is false

remove w from N
for z in Out(w)

if visited(z) is false
visited(z)← true
add z to N
parent(z)← w

path← empty
if visited(y) is true

t← y
path← y
while t is not x

t← parent(t)
path← concatenate(t,path)

return path

Note N is a queue.

ModifiedBFS is O(V + E) because it is essentially normal BFS plus a while loop that
is at most O(V). So the total running time is O(V + E)

�

9

ECE 374 B Midterm 2 Spring 2023

(continued from previous page)

(b) Describe an algorithm that finds all the vertices that can reach t using an important path.

Solution: There are 2 components to this algorithm. First verifying that t can be
reached from the endpoint of the important edge, node v. Then determining which
nodes can reach the beginning of the important edge, node u.

To verify that t can be reached from the endpoint we run BFS on the graph from
node v then check that t is reached.

To determine which nodes can reach the beginning of the important edge we flip
the direction of all the edges then run BFS on this new graph from node u. All nodes
that can reach node u in the original graph will be reachable from node u in the reverse
graph.

Let e be the important edge, V the node list, Out be the adjacency list, and t be the
destination node.

ImportantVertices(G(V, Out), e, t):
u← outNode(e)
v← inNode(e)
Tv← BFS(G(V, Out), v)
if t in Tv

for x in V
for y in Out(x)

x in Out2(y)
Tu← BFS(G(V, Out2), u)
list← vertices(Tu)

else
list← empty

return list

BFS is O(V + E), reversing the edges in the graph is O(E). So the total running time
is O(V + E).

�

10

	Short answer (2 questions) - 22 points
	Short answer II (4 questions) - 28 points
	Finding a plurality - 15 points
	Dynamic programming - 15 points
	Graph algorithms (2 questions) - 20 points

