
ECE 374 B: Algorithms and Models of Computation, Spring 2023
Midterm 2 – April 04, 2023

• You will have 75 minutes (1.25 hours) to solve 5 problems. Most have multiple parts.
Don’t spend too much time on questions you don’t understand and focus on answering as
much as you can!

• No resources are allowed for use during the exam except a multi-page cheatsheet and
scratch paper on the back of the exam. Do not tear out the cheatsheet or the scratch
paper! It messes with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We will take off points if we have difficulty reading
the uploaded document.

• Incorrect algorithms will receive a score of 0, but slower than necessary but correct
algorithms will always receive some points, even brute force ones. Thus, you should
prioritize the correctness of your submitted algorithms over speed; you will receive more
points that way. On the other hand, submit the fastest algorithms that you know are
correct; faster algorithms will receive more points.

• Any recursive backtracking algorithm or dynamic programming algorithm given without
an English description of the recursive function (i.e., a description of the output of the
function in terms of their inputs) will receive a score of 0.

• Any greedy algorithm or a modification of a standard graph algorithm given without a
proof of correctness will receive a score of 0.

• Any algorithms written in actual code instead of pseudocode will receive a score of 0.

• For problems with a graph given as input, you may assume the graph is simple (i.e., it has
no self-loops or parallel edges).

• Unless explicitly mentioned, a runtime analysis is required for each given algorithm.

• Don’t cheat. If we catch you, you will get an F in the course.

• Good luck!

Name:

NetID:

Date:

ECE 374 B Midterm 2 Spring 2023

1 Short answer (2 questions) - 22 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your answers,
but a complete proof is not required.

(a) Give a tight asymptotic bound for the following recurrences :

(i)

A(n) = 2A
�n

2

�

+ n3 A(0) = A(1) = 1

(ii)

B(n) = B(n− 2) + n2 B(0) = B(1) = 1

(b) We developed a new type of algorithm to sort a set of (non-numerical) elements. It sorts a
set of size n elements by dividing the sort into nine sub-sorts of size n/3, recursively solving
each sub-sort, and then combining the nine solutions in O(n2) time. What is the asymptotic
running time of this algorithm?

1

ECE 374 B Midterm 2 Spring 2023

2 Short answer II (4 questions) - 28 points

Answer the following questions. You may briefly (no more than 2 sentences) justify your answers,
but a complete proof is not required. For the following graph problems, use the notation
G = (V, E), n= |V | and m= |E|

(a) How many strongly connected components does a directed acyclic graph (DAG) have?

(b) In the Floyd-Warshall (found in the cheat sheet), we defined a recurrence d(i, j, k). Give an
English description (no more than 2 sentences) of what d(i, j, k) represents.

Note: what’s in the cheat sheet does not constitute a english description for the recurrence.

2

ECE 374 B Midterm 2 Spring 2023

(c) Given n vertices, what is the minimum number of edges one would need to create a graph
with exactly one topological sort.

(d) Your friend says he discovered a better way of calculating the shortest path in graphs
with negative weight edges. All we need to do is find the minimum edge weight w∗ =
min{w(u, v)|(u, v) ∈ E} and add it to all the other edges in the graph ŵ= w(u, v)−w∗.

Now that the edges are all positive weight, you can use Djikstra and find the shortest path.
Does this method of re-weighting work? Either prove the correctness of the method or
provide a counter example (and briefly explain the counter example).

Circle one: Yes(re-weighting works) No (re-weighting does not work)

3

ECE 374 B Midterm 2 Spring 2023

3 Finding a plurality - 15 points

Given an arbitrary array A[1..n], describe an algorithm to determine in O(n) time whether A
contains more than n/4 copies of any value. Do not use hashing, or radix sort, or any other
method that depends on the precise input values.

4

ECE 374 B Midterm 2 Spring 2023

4 Dynamic programming - 15 points

A common subsequence of three strings X , Y , Z is a string that is a subsequence of each of X , Y ,
and Z . Describe a DP algorithm that returns the length of the longest common subsequence of
X [1..n], Y [1..n], and Z[1..n] by providing the following.

Recurrence and short English description(in terms of the parameters):

Memoization data structure and evaluation order:

Return value:

Time Complexity:

5

ECE 374 B Midterm 2 Spring 2023

5 Graph algorithms (2 questions) - 20 points

For the graph problems, assume graphs are represented by adjacency lists that contain information
about outgoing edges only – that is, for each vertex u in the graph, you know Out(u), which
stores outgoing edges from vertex u.

Assume you had a directed acyclic graph with one edge marked as important. A important
path is a path that contains this one important edge.

Assume all the edges have the same weight ℓ(e) = 1.

(a) Describe an algorithm that finds the shortest important path (not just path length) from s
to t.

6

ECE 374 B Midterm 2 Spring 2023

(continued from previous page)

(b) Describe an algorithm that finds all the vertices that can reach t using an important path.

7

ECE 374 B Midterm 2 Spring 2023

This page is for additional scratch work!

8

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

Definitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the first peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi (n, src, dest, tmp):
if (n > 0) then

Hanoi (n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n

k=1 k =
n(n+1)

2

• Geometric series closed-form formula:
∑n

k=0 ark = a 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1), loga b = logc b/ logc a.

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequenceB ofA do

ifB is increasing and |B| > max then
max = |B|

returnmax

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
ifA[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
returnmax

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx + bR)(cLx + cR) = (bLcL)x
2

+ ((bL + bR)(cL + cR)− bLcL − bRcR) x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to find element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i):
sublists = [A[j:j+5] for j← 0, 5, . . . , len(A)]
medians = [sorted (sublist)[len (sublist)/2]

for sublist ∈ sublists]

// Base case
if len (A)≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians)≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot =Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
else if i > k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =

0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n

if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do

if A[i] ≥ A[j]
LIS[i, j] = LIS[i− 1, j]

else
LIS[i, j] = max

{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min

αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 tom doM [i, 0] = iδ
for j ← 1 to n doM [0, j] = jδ

for i = 1 tom do
for j = 1 to n do

M [i][j] = min

COST
[
A[i]

][
B[j]

]

+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

2 Graph algorithms

Graph basics

A graph is defined by a tuple G = (V,E) and we typically define n = |V | and m = |E|. We define (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this definition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algorithm

Kahn(G(V,E),u):
toposort←empty list
for v ∈ V :

in(v)← |{u | u→ v ∈ E}|
while v ∈ V that has in(v) = 0:

Add v to end of toposort
Remove v from V
for v in u→ v ∈ E:

in(v)← in(v)− 1
return toposort

Running time: O(n + m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
for i← 1 to n:

Visited[i]← False
Add u to ToExplore and to S
Visited[u]← True
Make tree T with root as u
while B is non-empty do

Remove node x from B
for each edge (x, y) inAdj(x) do

if Visited[y] = False
Visited[y]← True
Add y to B, S, T (with x as parent)

Note:

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Strongly connected components

• Given G, u is strongly
connected to v if v ∈
rch(u) and u ∈ rch(v).

• A maximal group of
vertices that are all
strongly connected to
one nother is called a
strong component.

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Metagraph - linear time

Metagraph(G(V,E)):
Compute rev(G) by brute force
ordering← reverse postordering of V in rev(G)

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each u in ordering do

if u is not visited and u ∈ V then
Su ← nodes reachable by u by DFS(G, u)
Output Su as a strong connected component
G(V,E)← G− Su

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

for v ∈ V do
d(v)←∞

X ← ∅
d(s, s)← 0
for i← 1 to n do

v ← argminu∈V −X d(u)
X = X ∪ {v}
for u in Adj(v) do

d(u)← min {(d(u), d(v) + ℓ(v, u))}
return d

Running time:O(m+nlogn) (if using a Fibonacci heap as thepriority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) =

0 if v = s and k = 0

∞ if v ̸= s and k = 0

min

{
minuv∈E {d(u, k − 1) + ℓ(u, v)}
d(v, k − 1)

else

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v ̸= s.
Pseudocode: Bellman-Ford

for each v ∈ V do
d(v)←∞

d(s)← 0

for k ← 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v)← min{d(v), d(u) + ℓ(u, v)}

return d

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

d(i, j, k) =

0 if i = j

∞ if (i, j) /∈ E and k = 0

min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)
else

Then d(i, j, n − 1) will give the shortest-path distance from i to j .
Pseudocode: Floyd-Warshall

Metagraph(G(V,E)):
for i ∈ V do

for j ∈ V do
d(i, j, 0)← ℓ(i, j)

(* ℓ(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 0 to n− 1 do
for i ∈ V do

for j ∈ V do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for v ∈ V do
if d(i, i, n− 1) < 0 then

return "∃ negative cycle inG"

return d(·, ·, n− 1)

Running time: Θ(n3)

	Short answer (2 questions) - 22 points
	Short answer II (4 questions) - 28 points
	Finding a plurality - 15 points
	Dynamic programming - 15 points
	Graph algorithms (2 questions) - 20 points

