ECE 374 CSG vs CFG

Ranjani Ramesh

September 2025

1 What is the difference between Context Free
and Context Sensitive Grammars?

First detail to remember: All Context Free Grammars (CFGs) are also
Context Senstive Grammars (CSGs).
As seen in Chompsky’s Hierarchy (below), CFGs are a special subset of CSGs

grammars (generators) automata (acceptors)

* more complex
« more powerful
« less restricted

Turing
machine

recursively
enumerable

context- linear bounded
sensitive automaton

context- push-down
liee automaton

regular finite
grammar automaton

Now, coming to actual differences between them. The main difference lies in
the way the production rules are defined for each of these Grammars.

1.1 CFG Production Rule Definition

A=«

e Here A is a non-terminal. Non-terminals are our variables such as the
usual start symbol S and other variables such as A, B, and so on.



e « can belong to any string of non-terminals/terminals of any length. Most
importantly, « is independent of what surrounds A, thus making
it context free.

1.2 CSG Production Rule Definition

uAv = uyv

e Here, A is a non-terminal.

e The main difference here, is the difference of these u and v characters.
These are the context that makes these grammars context sensitive. They
are strings of non-terminals or terminals of any length.

e v denotes what A becomes in the context of u and v. 7 can be either a
terminal or non-terminal string of any length.

2 Examples

Our main question during Office Hours was why does something like

L = {a't/c*|i = j = k} constitute only a CSG (and NOT a CFG), while some-
thing like L = {a'b’c*|i = k or j = k} (Lab 6, Q6) constitutes a CFG (and a
CSG).

This is because of the fact that in the first case we have to track i, j, and k
and their equality to each other, while in the second case, we have to track two
separate relationships i = k and j = k.

Considering the automatons that describe these grammars (refer to the Chom-
sky’s hierarchy above), for CFGs they use PDAs while CSGs use something
called Linear Bounded Automatons (LBAs). PDAs utilize a single stack and
thus can track a single dependency since they can pop a symbol and simultane-
ously push another symbol. However, they have limitations since they cannot
track more than one dependency (while LBAs can do this).

Here are the grammars for these questions to illustrate this better:

2.1 CSG Example
First, for L = {a'bcF|i = j = k,i,j,k > 0}
S — aSBC | aBC To create strings looking aBCBCBC and the base case aBC since i, j , k > 0

CB — BC Previously, BCs occur together, so we need to get the Bs and Cs to come together
aB — ab Context is important here, since B becomes b only if there is a a before the B.

bB — bb As previous, but if only there is a B before. For runs of b.

bC' — be For the first ¢ after the run of bs ensuring c is in the right place (after run of bs)
cC — cc For the ¢ in the run of cs



I would recommend generating some of your strings with these production rules.
Here is a sample one:

S — aSBC — aaSBCBC — aaaBCBCBC - Rule 1

aaaBCBCBC — aaaBBCCBC — aaaBBCBCC — aaaBBBCCC - Rule
2

aaaBBBCCC — aaabBBCCC - Rule 3
aaabBBCCC — aaabbBCCC — aaabbbCCC - Rule 4
aaabbbCCC — aaabbbecCC - Rule 5

aaabbbcCC — aaabbbecC — aaabbbece - Rule 6

2.2 CFG Example
Similar to Lab 6 Q 6, L = {a’b/c*|i = k or j = k}:

S — AB|XY
A — aAble
B — ¢Ble
X — aX|e
Y — bYcle

The main thing to notice here, is that in each of the production rules, there is
no context to maintain similar to the previous production rules!

Hope this clears up your question! Email me at rr37@Qillinois.edu if you have
further questions or come to Office Hours (preferably on Thursday since it is
less crowded)



