
Behind the Scenes of Ctrl + F

Ajitesh Dasaratha

October 2025

Every one of you has used a ctrl + f search before - What’s going on
behind the scenes though?

The problem of ctrl + f can be rephrased more formally as: Given a
string/document text, and a string pattern. how do we find the occur-
rences of pattern in text?

Let’s also define textlen as the number of characters in the document,
and patternlen as the length of the pattern

Approach 1: I just learned nested loops

The most naive approach would be: Loop through every single charac-
ter in the text, and then ask; do the next patternlen characters exactly
match the characters of pattern? If yes, you’ve found a match, and if
not, then that’s not a match. As an example, here is what this algo-
rithm looks like, while looking for the string abac in ababcaababac

1



Line up pattern with first index of text

Check character by character if everything matches

Upon mismatch, move everything one spot to the right and repeat

Note: I am aware that I have only given the intuition for how this is
done. If you want implementation details, then this webpage does a
great job of that. TLDR: set two pointers, i to mark the index of text
you are looking at, j to mark the index of pattern you are looking at.
At any step in the algorithm, the ”line-up” is what you get when you
align the ith character of text with the jth character of pattern. You
move pattern ahead/behind by increasing/decreasing i/j

2

https://www.geeksforgeeks.org/dsa/naive-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/dsa/naive-algorithm-for-pattern-searching/


In the worst case, the runtime of this is O(textlen× patternlen), since
you have to loop through around textlen alignments, and at each align-
ment, in the worst case, you need to compare patternlen characters
before you find a mismatch. In practice though, the actual runtime
is usually closer to O(textlen), since most alignments will mismatch
within the first few characters.

Approach 2: I did the LeetCode question

Let’s continue with the example from before: looking for looking for
the string abac in ababcaababac. They both start off doing the same
thing: compare character by character until a mismatch is found. i.e.
this happens the same as it did for before:

Check character by character if everything matches

At this point, brute force would just move the alignment ahead by one
and restart the process. What’s the problem with this? Well, we know
that we were able to match the aba part of pattern to a substring of
text. If we blindly move ahead by one character, we are not using this
information to our advantage at all.

3



Here’s how we use the information to our advantage: of the characters
that have matched, what is the largest string that is both a proper
prefix (can’t be the whole string) and a proper suffix (again, can’t be
the whole string) of it? For example a is both a prefix and suffix of
aba. I can move pattern to the right such that the prefix a of pattern
lines up with the suffix a from the characters in text that matched up.
The previous sentence is probably easier explained by these diagrams:

Another example to show how this shifting works: say we were looking
for abcxxxxabc in abcxxxxababcxxxxabc

4



The great thing about this is you now skip a bunch of alignments, as
you say in the last example. This limits the worst case to O(textlen).
This is because, at every step we are doing one of two things: ei-
ther we are advancing the character of text we are looking at (and we
never go backwards in this algorithm), or we are moving the whole
pattern forward by 1 or more steps (which can happen a maximum
of textlen times). However, in practice this isn’t too useful, since
the worst case rarely happens anyways, and the average case is still
O(textlen), which is the same as the naive approach. It does however
help when you search through some special kinds of strings, like DNA
sequences which resemble the kind of strings I’ve used as examples so
far.

Again, this is just intuition. If you want implementation details, then
this is a famous algorithm called Knuth-Morris-Pratt (KMP) and this
webpage does a great job of showing its implementation. TLDR: you
make a table as a pre-processing step which tells you: If I’ve matched
the first c characters of pattern before finding a mismatch, how much
should I shift pattern to the right?. You also use pointers i and j to
mean the same things as they did in brute force approach.

Approach 3: I now live in the real world

Like I said, KMP only improves the worst case, which rarely happens
in practice. Let’s look at our third approach, Boyer-Moore-Horspool,
that actually helps a lot in practice:

Here is an example (and you’ll be relieved that there are actual words
in this, rather than some curated string like abacaadacb). Say I am
looking through one of Dr. Nickvash Kani’s fan pages, and want to
search for the string ”Dr. Connie”. Let’s say the text starts off with

5

https://www.geeksforgeeks.org/dsa/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/dsa/kmp-algorithm-for-pattern-searching/


the sentence ”The best professor at UIUC is, without a doubt, Dr.
Nickvash Kani, affectionately aliased Dr. Connie by some of his most
competent staff members.” Here is what the inital line-up looks like
(note: I have used the to mean whitespace):

I notice that the e from pattern is a mismatch with p in text. What’s
more, I notice that the character p doesn’t even occur in pattern! This
means any alignment I try that aligns any character of ”Dr. Connie”
with the p isn’t a good alignment, and I should skip it. The next
alignment I should try out is:

That’s a huge jump, and funnily enough, if you look at the end, we
have a mismatch again (a ̸= e). The character a doesn’t show up in
”Dr. Connie” either, which means we get another huge jump right
after that!

I didn’t even curate an example to specifically highlight where Boyer-
Moore-Horspool is especially good. I just thought it was funny, but it
ended up illustrating the point really well.
What about in the case where there is a mismatch, but the character
in text is also in pattern? Well, in that case, you just line up pattern

6



to match up the previous occurrence in pattern. For example, say you
are looking for the word ”check” in the sentence is ”Let him do his
thing - you don’t need to check on him every two seconds”, here is the
initial alignment:

In this case, the mismatch happens since h ̸= k. However, the h we
found in text does exist in pattern though: so any valid line-up would
have the h from text line up with the one from pattern. We can’t
move the string way past like we did in the previous case, but we can
stil shift pattern so that the h’s are in line - still a good amount of
skipping

One final case before this algorithm is complete, what if you match
multiple characters from the back, but then encounter a mismatch in
the middle of the word? Say you’re looking for the word ”nation”
in the sentence ”Notion is a wonderful productivity tool.” Then our
misalignment is:

7



We do exactly what we would have done, if the rightmost character had
been a mismatch (using the above 2 rules). In this case, the rightmost
character matches the n′s of ”nation” and ”notion”. We will slide the
word ”nation”, so that the first n in ”nation” is lined up with the n
from ”notion”. So now we have:

In the worst case, the number of comparisons for this algorithm is still
O(textlen× patternlen). An example of where this might happen is if
you try finding the string baaa in aaaaaaaaaaaaabaaa. Except, that
almost never happens in most of the documents that you ctrl + f. In
fact, in most cases (and as you saw in the examples above), you skip
almost patternlen characters. So, you only need to check around one
in every patternlen characters. This gives you a best-case runtime of
O( textlen

patternlen), which is a massive improvement over any of the other
algorithms. And this Big-O runtime actually means something, since
as we’ve seen, the average runtime is quite close to the best case.

If you want implementation details, then this webpage does a great job
of that. TLDR: You make a table that tells you: if I see a mismatch,

8

https://www.geeksforgeeks.org/dsa/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/dsa/boyer-moore-algorithm-for-pattern-searching/


and the character from text that was matched to the rightmost char-
acter of pattern is some character char, how much do I get to shift by?
And then shift by that much every time there’s a mismatch. Like the
above algorithms you have pointers i and j to move through text and
pattern.

A quick bonus lesson from this - theoretical Big-O isn’t everything.
Most of the times you’ve used ctrl + f, something similar to Boyer-
Moore-Horspool is what retrieved the string for you, even though it
has a worse theoretical runtime than KMP in the worst case. What
matters in real life is how fast an algorithm works for the cases you
usually see, which sometimes leads you to pick a ”worse” algorithm
than what makes sense theoretically.

9


