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Abstract

It is proven that given n jigsaw puzzle pieces, determining the maximum number of puzzle pieces
that connect is NP-hard. This problem belongs to co-NP and is co-NP-complete.

1 Introduction

Four months ago, professional machinist Shane Wighton released a video about building a robot that
can solve a large jigsaw puzzle on his YouTube channel Stuff Made Here. Professor Nickvash Kani from
University of Illinois Urbana-Champaign offered his students a $3,000,000,000 cash reward, a retroactive
A+ in his class, and most importantly an RA position, for answering if the jigsaw-puzzle discussed in
the video belongs to P, NP, NP-hard, NP-complete, or co-NP. Suppose there are n puzzle pieces in that
may or may not belong to the same puzzle. What is the maximum number of puzzle pieces k that can
be connected? This paper proves that determining k is co-NP-complete.

2 Classifying the Complexity of Jigsaw Puzzle Problems

MaxJigsaw accepts as input n distinctly shaped four-sided jigsaw puzzle pieces and determines the
maximum number of pieces k that can be connected such that k ≤ n and every two pieces that interlock
with one another share a compatible edge connection.

HasHamiltonianPath accepts as input a directed graph G = (V,E) with |V | vertices and |E|
directed edges, and determines whether there exists a sequence of vertices and edges in G that forms a
path that visits every vertex in V exactly once.

2.1 MaxJigsaw /∈ NP

A problem instance of MaxJigsaw consists of n four-sided puzzle pieces. A certificate c consists
of an integer k, the thought-to-be maximum number of pieces that can connect, and an assignment of
placements to the k pieces. While a certifier algorithm C(I,c) can verify in polynomial time that the
pieces in c are all used and that adjacent pieces in c have compatible connections, assuming P!=NP,
C(I,c) cannot verify in polynomial time that k is the maximum number of pieces that can be connected,
as doing so would require solving the NP-hard MaxJigsaw problem itself to find the true maximum.

2.2 MaxJigsaw is NP-hard

MaxJigsaw is at least as hard as the (NP-complete) directed Hamiltonian Path problem.

HasHamiltonianPath ≤
p
MaxJigsaw (1)

Figure 1: A decider for the directed Hamiltonian Path problem.
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https://www.youtube.com/watch?v=WsPHBD5NsS0


The NP-hardness of MaxJigsaw is shown by reduction from HasHamiltonianPath in polynomial
time. Figure 1 outlines the process for solving HasHamiltonianPath using the oracle MaxJigsaw.
An arbitrary instance of the Hamiltonian Path Problem G(V,E) is transformed using a polynomial
time reduction, Transform, into a specific instance of the MaxJigsaw problem Je. The oracle
MaxJigsaw returns the size of the largest set of puzzle pieces that can be connected k. If k ≥ 2|V | − 1,
HasHamiltonianPath returns True. Otherwise, it returns False. Transform accepts as input G(V,E),
where V is a set of distinct vertices labeled V= [v1, v2, ...vn] and E= [(vi, vj)|∃a directed edge from vi to vj ].
For each edge piece and for each vertex piece, Transform(G(V,E)) creates a maximum of n = 2|V |+2
indents and extrusions. Transform has a polynomial time complexity O(|V ||E|) +O(|V |2) = O(|V |2).

Transform(G(V,E))

pieces ← empty set of puzzle pieces
for each vertex vi in V

p ← an (n+2) x (n+3) puzzle piece with all columns except the last one filled
add i inwards squares to the left side of p[2:2+a, 1]
add i outwards teeth to the right side of p[2:2+b, n+3]
add an inwards notch to the top edge of p[1, ⌊n+3

2 ⌋]
add an inwards notch to the bottom edge of p[n+2, ⌊n+3

2 ⌋]
pieces.add(p)

for each directed edge (va, vb) in E
p ← an (n+2) x (n+3) puzzle piece with all columns except the last one filled
add a inwards teeth to the left side of p[2:2+a, 1]
add b outwards squares to the right side of p[2:2+b, n+3]
add an inwards notch to the top edge of p[1, ⌊n+3

2 ⌋]
add an inwards notch to the bottom edge of p[n+2, ⌊n+3

2 ⌋]
pieces.add(p)

return pieces

Input graph G(V,E) in Figure 2 is a YES instance of the Hamiltonian Path problem. The problem
instance Je, consisting of 11 puzzle pieces, is generated by passing G(V,E) into the Transform routine.

Figure 2: G(V,E) depicts an instance of the Hamiltonian Path problem that is passed as input into
Transform(G(V,E)) to produce six jigsaw puzzle pieces Je, an instance of MaxJigsaw.
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Figure 3: An illustration of the maximum number of connectable jigsaw pieces from Figure 2.

The puzzle pieces marked in red in Figure 3 correspond to vertices and edges in G(V,E) that form
the Hamiltonian Path. For the problem instance Je in generated Figure 2, the oracle MaxJigsaw
determines that a maximum of 9 consecutive puzzle pieces can be connected. Since 9 >= 2|4| − 1,
HasHamiltonianPath returns True. The oracle is capable of determining the maximum number of
4-sided puzzle pieces that can connect in any placement as long as connections between all adjacent
pieces are valid. The specific placement of squares, teeth, and notches imposed by Transform convert
arbitrary directed graphs to specific puzzle pieces whose maximum connectivity is achieved by a kx1 or
1xk placement. A proof of correctness, justifying the validity of the reduction, is provided below.

Necessity: G(V,E) has a Hamiltonian path ⇒ ≥ 2|V| − 1 pieces in Je are connected
⇒ ∃ a finite sequence of distinct edges in G that travel from one vertex to a different vertex in G

and visit each vertex in G exactly once.
⇒∃ a sequence of distinct vertices and edges vstart, e(start,i), vi, e(i,j)....vfin, comprising of |V |

vertices and |V | − 1 edges visiting visit every vertex in G exactly once
⇒ ∀ vi ∈ V, ∃ a corresponding a piece with i left sided square indents i right sided teeth extrusions
⇒ ∀ edges (vi, vj), ∃ a piece with i left sided teeth indents and j right sided square extrusions
⇒ ∀ |V | vertices ∈ vstart, e(start,i), vi, e(i,j)....vfin, ∃ a corresponding piece in Je and ∀ |V | − 1 edges
∈ G connecting two vertices, ∃ a puzzle piece connecting the two corresponding vertex pieces

⇒ ≥ 2|V | − 1 pieces in Je are connected
.
Sufficiency: ≥ 2|V| − 1 pieces in Je are connected ⇒ G(V,E) has a Hamiltonian path

• Vertex pieces in Je have square indents on the left, teeth extrusions on the right, and notches on
the top and bottom that prevent any two vertex pieces from being directly connected.

• Edge pieces in Je have teeth indents on the left, square indents on the right, and notch indents on
the top and bottom that prevent any two edge pieces from being connected.

• These geometric constraints make it impossible for two vertex pieces vi and vj to be connected
unless there is an edge piece corresponding to an edge from vi to vj in G.

≥ 2|V | − 1 pieces in Je are connected
⇒ all vertices of V are included somewhere in the sequence (due to geometric constraints)
⇒ there are |V | − 1 edge pieces included in the sequence between the |V | pieces
⇒ ∃ an alternating sequence of vertex and edge pieces of size the 2|V | − 1 including all vertex pieces
⇒ ∃ a corresponding alternating sequence of vertices and edges in G that visits every vertex once
⇒ G has a Hamiltonian path

2.3 MaxJigsaw ∈ co-NP

A NO instance I of MaxJigsaw consists of (1) a subset of n four-sided puzzle pieces that have at
least two puzzle pieces that have an incompatible connection, or (2) a subset of n four-sided puzzle pieces
have valid connections for adjacent pieces for some integer less than the true maximum number of pieces
that can be connected.

In Case 1, a certificate c consists of an integer k, the thought-to-be maximum of the n puzzle pieces
that can be connected, and an assignment of placements to the k pieces. A certifier algorithm C(I,c)
can parse the certificate c and verify in polynomial time at least one set of adjacent pieces in c have
incompatible edge connections or that < k pieces are used.

In Case 2, a certificate c consists of (1) an integer q smaller than the true maximum number of puzzle
pieces that can connect, (2) an integer k′ > q such that k′ puzzle pieces connect, and (3) an assignment
of placements to the k′ pieces. A certifier algorithm C(I,c) can parse the certificate c and verify in
polynomial time that every set of two adjacent pieces from k’ are connected with a compatible edge.
C(I,c) can verify the correctness of the counterexample provided in c in polynomial time.
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2.4 MaxJigsaw /∈ NP-complete

Since MaxJigsaw /∈ NP, it is not NP-complete.

2.5 MaxJigsaw ∈ co-NP-complete

MaxJigsaw ∈ co-NP and is NP-hard, thus it is co-NP-complete.
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