
Why does the master theorem work?

Ajitesh Dasaratha

October 2025

There is a part of your cheatsheet that says:

Suppose you have a recurrence of the form

T (n) = rT
(
n
c

)
+ f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf
(
n
c

)
= κf(n) where κ < 1, T (n) = O(f(n))

Equal: rf
(
n
c

)
= f(n), T (n) = O(f(n) · log n)

Increasing: rf
(
n
c

)
= Kf(n) where K > 1, T (n) = O

(
nlogc r

)
How does this work?

One fact that’ll get used in all of these proofs is that the number of levels in
the tree is roughly logc n. Why? Let the tree have l levels. At each level,
the problem size is divided by a factor of c from the previous level, so at
the root you have problem size n, one level down it’s n/c, then n/c2 and so
on. Following this logic, the problem size at the last level is n/cl. We also
know that at the last level, our problem size is a very small number, which
for simplicity we’ll say is 1.

So,

1 ≈ n

cl
=⇒ cl ≈ n =⇒ l ≈ logc n

1

Now we move on to proving the three cases.

Equal work: The total work done is work done at each level× number of levels =
f(n)× logc n, but in Big O that’s just O(f(n) · log n)

Decreasing work: Let some u < 1 be an upper bound on how much work
gets passed on to the next level. So if at level i you have w work, at level i+ i
you have at most uw < w work. Then, at the root level you have f(n) work,
on the next at most uf(n), then u2f(n), and so on. If we pretend the tree
has infinite levels, then using the geometric series formula the total work is

f(n) + uf(n) + u2f(n) + ... =
f(n)

1− u
= O(f(n))

Since the total work done is less than what this infinite sum suggests, O(f(n))
is a valid upper bound. And since f(n) work is done at the root level, we also
know the runtime is at least O(f(n)), so this is the tightest bound we can get.

Before you get into the last case, note that I will be using the identity alogb c =
clogb a as fact. If you’re curious why this holds, then like all important ques-
tions in life, someone has answered it here on Reddit.

Increasing work: This part of the master theorem works only if f(n)
grows slower than nlogc r. First consider functions of the form f(n) = np,
0 < p ≤ logc r. The recurrence is then T (n) = rT (n/c) + np. The amount of
work one level below the root is:

rT (n/c) = r(rT (
n

c2
) +

np

cp
) = r2T (n/c) + r

np

cp

The work done at the root is np, and at the next level its r
cp × np. So the

work gets multiplied by a factor of r
cp at every level, and there are l = logc n

levels. Using geometric sum, total work is then:

np(1 +
r

cp
r2

c2p
+ ...+

rl−1

c(l−1)p
) = np ·

(r

cp

)l

− 1

r

cp
− 1

2

https://www.reddit.com/r/learnmath/comments/800ij9/alogbcclogba_proof/

To simplify, (r

cp

)logc n

= nlogc
r
cp = nlogc r−logc c

p

= nlogc r−p

So total work is

np ·

(r

cp

)l

− 1

r

cp
− 1

= np · n
logc r−p − 1
r

cp
− 1

=
nlogc r − np

r

cp
− 1

Since the bottom is constant, and nlogc r grows faster than np, we finally get

nlogc r − np

r

cp
− 1

= O(nlogc r − np) = O(nlogc r)

So we have shown that for any f(n) = np, p < logc r, T (n) = O(nlogc r). If
f(n) grows slower than any such polynomial np, then we can be sure that
O(nlogc r) is a still valid upper bound to the running time, since we are passing
down less work at every level. But how do we know O(nlogc r) is the tighest
upper bound?

Now imagine if we had a function that was growing slower than np. In fact,
let’s assume f(n) = 0 just to prove a point. In this case, the total work is
proportional to the number of leaves in this tree, since no work is done at any
of the levels except the last level. At that level, we a very small subproblem,
so each takes a constant amount of time to solve. How many leaves are there?
The tree has logc n levels, and each level multiplies the number of leaves by
r, since that’s how many subproblems we divide each problem into. So there
are rnumber of levels in tree = rlogc n = nlogc r. Since each takes a constant time
to solve, the Big O runtime is still O(nlogc r).

We have proved that whether the work at each level is 0 or np, p < logc r,
the Big O runtime is O(nlogc r) in both cases. What if a function grows at an
intermediate rate? Well, since it’s growth rate is bounded both above and
below by O(nlogc r), we know that the tighest bound we can establish for its
runtime is O(nlogc r).

3

