Can you have a DFA that only accepts strings of prime length?

Ajitesh Dasaratha

September 2025

We want to see whether the language

$$L = \{1^p \mid p \text{ is prime}\}$$

is regular or not.

I genuinely have no idea how I'd construct a DFA, NFA or regular expression for this. If there were only a finite number of primes, then we could just hardcode all those strings in a regular expression. Except you can prove there are infinite primes by contradiction (it's a very standard proof, any of the top results from a Google search have the right proof)

It's hard to think of a fooling set as well, but we can think of some qualities a fooling set F would have. It needs to be an infinite set of strings such that for any strings $x = 1^i$ and $y = 1^j$ in F, you can add some string 1^k , so that exactly of 1^{i+k} and i^{j+k} , has prime length.

Let's go through some examples:

x = 11, y = 111: With suffix $z = 1, xz = 111 \in L, yz = 1111 \notin L$. What about $x = 1^{13}, y = 1^{19}$? Then all strings $z = \epsilon, 1, 11, 111, 1111, 11111$ won't work. $z = 1^6$, works since $xz = 1^{19} \in L$ and $yz = 1^{25} \notin L$.

There isn't an obvious way to distinguish any two arbitrary strings. We can rephrase our problem slightly: given two integers, i, j (the lengths of our strings), what integer k can we add to both, such that exactly one of i + k

and j + k is prime? This k will be the length of our distinguishing suffix. We can also restrict which i and j values we want to be in our fooling set if needed.

Great, we now have the problem phrased as something else we have no idea how to solve!

There's a theorem called Dirichlet's theorem that states:

Let a and d be positive integers with gcd(a, d) = 1 (This means they have no common factors other than 1, so for example gcd(3, 5) = 1) Another way of saying this is that a and d are co-prime. Then the arithmetic progression

$$a, a + d, a + 2d, a + 3d, \dots$$

contains infinitely many prime numbers.

How is this useful? Say we have two strings $x = 1^i$ and $y = 1^j$, i < j, both i and j are composite, and gcd(i,j) = 1. Let d = j - i. Now, d and i must be co-prime (since if they had a common factor more than 1, then j = i + d would also have that same factor, causing gcd(i,j) > 1, but we know gcd(i,j) = 1). By Dirichlet, the arithmetic progression

$$i, i + d, i + 2d, i + 3d, \dots$$

has infinitely many prime numbers. Let's call the *smallest* of these numbers p=i+nd. Now, $n\geq 2$ since j=i+d was taken to be composite, and i+nd is prime, while i+(n-1)d isn't. Now, consider the strings 1^i and 1^j , and the suffix $z=1^{(n-1)d}$. If we do this, then $xz=1^i1^{(n-1)d}=1^{i+(n-1)d}\notin L$, and $yz=1^j1^{(n-1)d}=1^{i+d}1^{(n-1)d}=1^{i+nd}\in L$.

This proves that if two strings x and y have composite lengths that are coprime, then they are distinguishable since we can come up with some suffix z that gets exactly one of xz and yz accepted.

Now we need to form an infinite fooling set of strings $F = 1^{l_n}$, where all l_n are composite, and every pair $l_a, l_b \in F$ is co-prime. How do we pick out such lengths?

If we ditch the requirement of being composite, and just focus on co-primeness then $P = \{n : n \text{ is } prime\}$ works. The easiest way to satisfy the requirement

of being composite is by squaring all those prime numbers. This way, we don't lose the property of any two elements l_a and l_b having $gcd(l_a, l_b) = 1$, but we can also make all elements composite.

So, our final fooling set is:

$$F = \{1^{p^2} \mid p \text{ is prime}\}.$$

Note that F is infinite because there are infinitely many primes. And by the argument earlier in the text, since every pair of strings will have co-prime lengths, and composite havelength, this fooling set is valid.