
Why do all comparison-based sorting
algorithms have to run in O(n log n)?

Ajitesh Dasaratha

September 2025

Ever noticed how all the best comparison-based (i.e., they work by comparing
elements from the list) sorting algorithms like QuickSort and MergeSort have
an O(n log n) worst-case runtime? I used to think that theoretically, some
genius could come up with a better algorithm, but no one has yet. But it
turns out any sorting algorithm you come up with has to have an O(n log n)
worst-case runtime.

You can view any sorting algorithm as running a certain permutation on the
input. For example, if you were to sort the list {3, 1, 2}, you need to do the
following permutation of 3 elements: move the first element to the third slot,
move the second and third elements one slot to the left.

In general, the number of ways to permute n elements is n!. And so the sort-
ing n elements problem can be viewed as: given a list of n elements, which
of its n! permutations will sort it?

Every time we compare two elements a, b, there are two possible results: a < b
or b < a (for simplicity, assume no two elements are equal). You can have
your algorithm do different things(i.e., swap/permute a different
set of elements) in both cases. In some cases, if that comparison
tells you you’re done sorting, you could also return.

For example, here is how you could sort 3 elements:

1



Algorithm 1 Brute-force sort of 3 distinct elements
procedure Sort3(a, b, c)
if a < b then
if b < c then
return (a, b, c)

else
if a < c then
return (a, c, b)

else
return (c, a, b)

end if
end if

else
if a < c then
return (b, a, c)

else
if b < c then
return (b, c, a)

else
return (c, b, a)

end if
end if

end if

(Note: real sorting algorithms almost never look like this; usually after each
comparison, they some, and then decide what comparison comes next, then
do swaps after that if needed, and so on. The combination of all these swaps
results in a permutation at the end. I’ve just written the code like this to
make this perspective of viewing the sorting problem in terms of cases very
explicit.)

We treat each of the 6 permutations we might need to perform on the input
as its own case. Notice that the most comparisons we ever need with this
approach is 3. In some cases, we can return in just 2 comparisons: like if
a < b and b < c, we are already done.

How does this generalize to the problem with n elements?

2



The problem of sorting n elements has n! cases, (that’s how many ways you
could permute n elements). We need enough comparisons to cover all cases.
If you’re allowed c comparisons, how many cases could you cover?
In any algorithm you make, after each comparison, you either:

• split your path into 2: if a < b, do x, otherwise do y

• return (as we did when we had a < b, b < c).

If you are maximizing the number of cases covered, you would always split
your path into 2 (note: real algorithms always return in some cases, I’m only
choosing the split every time to show the maximum number of paths). Since
each comparison can give one of 2 results, if there are c comparisons, then
you get a maximum of 2c paths, covering that many cases.

As stated earlier, our problem has n! possible cases. We need at least enough
comparisons to cover all of those cases, so we need to pick a c large enough
that:

2c ≥ n!.

Taking logarithm on both sides,

c ≥ log2(n!).

It’s not immediately obvious how to simplify the log2(n!), or what that has to
do with n log n, so we need to do some simplifying. We can make the factorial
term much easier to simplify by using Stirling’s approximation, which states
that for large n,

n! ≈
√
2πn

(
n
e

)n
.

Using this, we get

log2(n!) ≈ log2

(√
2πn

(
n
e

)n)
= log2(

√
2πn) + log2

((
n
e

)n)
= log2(

√
2πn) + n log2

(
n
e

)
.

Since
log2

(
n
e

)
= log2 n− log2 e,

the final result is

c > log2(n!) ≈ log2(
√
2πn) + n log2 n− n log2 e.

3



Of these terms, the n log2 n is the one that grows fastest asymptotically as
n gets large, and so there you have it! The number of comparisons needed
to sort n items grows at O(n log n), meaning any comparison-based sorting
algorithm at best will have that runtime.

4


