Prologue [by Nickvash Kani]: This is a problem/solution posited in Lab 22 since I began teaching ECE₃₇₄ (over 4 years ago). In the Summer of 2024 **Eric Carl Roth** sent me a solution to this problem which I believe is correct. Eric was an amazing student, an exceptional course assistant and this proof solving a problem so many others (including professors) were not able to solve is a testament to his love of computer science.

PROBLEM (This is a variation of a problem from Lab 21 - NP-Hardness-II):

A *bicoloring* of an undirected graph assigns each vertex a set of *two* colors. There are two types of bicoloring: In a *weak* bicoloring, the endpoints of each edge must use *different* sets of colors; however, these two sets may share one color. In a *strong* bicoloring, the endpoints of each edge must use *distinct* sets of colors; that is, they must use four colors altogether. Every strong bicoloring is also a weak bicoloring.

Prove that finding a five-strong-bicoloring of a given graph is NP-hard.

Left: A weak bicoloring of a 5-clique with four colors. Right A strong bicoloring of a 5-cycle with five colors.

Solution: *Intuition*: Since this is a coloring problem, it's natural to assume we want to reduce from a coloring problem. An observation is that there are $\binom{5}{2} = 10$ possible bicolors, so maybe 10Color is a good problem to reduce from. However, we see the strong bicoloring problem is stricter since neighboring nodes cannot share a common color in their biclorings. To be specific, if we have a node arbitrarily bicolored, there are 3 possible ways to bicolor a neighboring node. So, how do we somehow map this restriction onto the 10Color problem? This motivates the creation of an edge gadget, which is seen and proved to work below.

Lemma: The following edge gadget is strongly 5 bicolorable if and only if the ends are different bicolors.

Proof: Let the set of five colors be $A = \{1, 2, 3, 4, 5\}$ and any two element subset be a bicolor. We must prove both directions of the lemma.

 \leftarrow : We choose to prove this direction via contrapositive. Suppose that the ends *a*, *d* are the same bicolor and WLOG call it $X = \{1, 2\}$. We color *b* with any valid, neighboring bicolor, so WLOG color it $Y = \{3, 4\}$. It's easily seen that there is no bicolor which can be neighbors to *X* and *Y* since the only color not in *X* and *Y* is 5. Therefore, the edge gadget is NOT strongly 5 bicolorable.

→: Suppose the ends are different bicolors. There are two cases to consider. *Case 1*: The colors are disjoint. WLOG color *a* with $X = \{1, 2\}$ and *d* with $Y = \{3, 4\}$. We can

color *b* with *Y* and *c* with *X* and it's a valid strong 5 bicoloring.

Case 2: The colors share a common element and WLOG say it's 2. WLOG color *a* with $X = \{1, 2\}$ and *d* with $Y = \{2, 3\}$. Color *b* with $Z = \{3, 4\}$ and color *c* with $\{1, 5\}$. This is a valid strong 5 bicoloring.

We've shown both directions of the statement. \Box

Proposition: The strong bicoloring problem for 5 colors is NP-Hard.

Proof: Let G = (V, E) be an arbitrary, undirected graph. We build a new graph H = (V', E') such that $V' = V \cup \{v_{xy}^1, v_{xy}^2 \mid xy \in E\}$ and $E' = \{xv_{xy}^1, v_{xy}^1, v_{xy}^2, v_{xy}^2, y \mid xy \in E\}$. In essence, we've replaced each edge by a path of length 3. I claim that H has a strong 5 bicoloring if and only if G has a 10 coloring.

←: Suppose *G* has a valid 10 coloring and assign each color a unique 5 bicolor. Fix a valid 10 coloring and in the transformed graph *H* assign the vertices $v \in V$ the bicolor corresponding to their respective color in *G*. By the lemma above, each path of length 3 in *H* is strongly 5 bicolorable since the endpoints are different bicolors. Therefore, *H* is strongly 5 bicolorable.

→: Suppose *H* has a valid strong 5 bicoloring. Then, each edge gadget must have differently bicolored endpoints from to the lemma above. Assign each bicolor a unique 10 color and in *G* assign each $v \in V$ their respective color in *H*. This is a valid 10 coloring.

It's clear we can construct *H* in polynomial time and thus the problem is NP-Hard.