
ECE 374 B Homework 3 Fall 2023

1. For each of the following languages over the alphabet Σ = {0,1}, either prove that the
language is regular (by constructing a DFA or regular expression) or prove that the language
is not regular (using fooling sets). Recall that Σ+ denotes the set of all nonempty strings
over Σ.

(a) L1a = {xwwy|w, x , y ∈ Σ+}

Solution: L1a is a regular language. The language only contains a limited
number of strings that are not part of it. By the fact that any language of finite
size is regular and regularity is preserved under complement. We can prove L1a
is regular.

We can say that any string of length at least 4 is in the language. For an
arbitrary string z of length at least 4, Let us define z as xz′ y where both a and b
are a single symbol in Σ. So, z′ has a of length at least 2.

x and y are two non-empty strings which are covered by ((0+ 1)+). z′ will
be ww. Since, our alphabet consists of just 0s and 1s, there are two cases. First,
z′ must be 00 or 11. This satisfies the constraint that there must be a repeating
string in the middle with length at least one. Now, let us consider the case where
we can have alternating 0’s and 1’s i.e, w= 10 or 01. To include this case we
add 1010 and 0101 to the regular expression.

Putting it all together you get the regular expression for L1a: (0+ 1)+(00+
11+ 1010+ 0101)(0+ 1)+.

Hence, the language L1a is a regular language.
Second, we know that the language is context-free simply because all regular

languages are by definition context-free. �
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(b) L1b = {xwwR xR|w, x ∈ Σ+}

Solution: Let us consider the fooling set F = {1n0n|n> 0}
Let x and y be arbitrary strings in F .
Then x = 1i0i and y = 1 j0 j for some positive integers i 6= j.
Let z = 0i1i .
Then xz = 1i0i0i1i ∈ L2d .
And yz = 1 j0 j0i1i 6∈ L2d , because i 6= j.
Thus, F is a fooling set for L2d .
Because F is infinite, L1b cannot be regular.
That being said, L1b is context-free because we can construct a context free

grammar that represents the above language. It is actually very simple:

S→ 0A0|1A1

A→ 0B0|1B1

B→ 0B0|1B1|ε

We have to have three terminals to ensure both x and w have at least one
character. Because there is a CFG that represents this language, the language is
context-free.

�
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2. For any language A, let SkipFirstChar(A) = {w|aw ∈ A for some charcater a ∈ Σ}. Show
that the class of context-free languages is closed under the SkipFirstChar operation.

Solution: The purpose of this problem is to encourage you to think about transfor-
mations in a context greater than DFAs/NFAs.

In this case we want to prove the closure of a context-free grammar. So we need
to transform the PDA that represents A into a PDA that represents SkipFirstChar(A).
The idea behind this transformation is that we have 2 copies of the original PDA. We
start in PDA 0 and for every transition that would normally burn a input character, we
have that transition go to the second PDA that accepts the rest of the string as normal.
We define this new PDA according to the following transformation:

• Take the PDA P that represents A and copy it so that you have P1 and P2.
• For every transition qA, a→ qB, b in P1, we have a transition that goes from P1

to P2 but doesn’t read a character from the string: qA,ε→ qB, b. Note that in
this transformation, we are only making the transition that burn a character a
go from P0 to PDA1.

• Have the accept state only in the states from P2

We’re just creating a new PDA(PT ) that skips one character from the input which is
what we want. So the formal transformation looks like:

QT =Q× {0, 1}

ΣT = Σ

Γ T = Γ

δT (q1
A, a) = {q1

B, b|{qB, b}= δ(qA, a)} for
δT (q0

A,ε) = {q1
B, b|{qB, b}= δ(qA, a)}

sT = s0

AT = {q1|q ∈ A}

Because there exists a PDA for this new language, SK I PON ECHAR(A) is context-
free. �

3



ECE 374 B Homework 3 Fall 2023

3. In a previous lab/homework we talked about a new machine called a finite-state transducer
(FST). The special part thing about this type of machine is that it gives an output on the
transition instead of the state that it is in. An example of a finite state transducer is as
follows:

n0start n1

1 : R

1 : A

0 : A 0 : R

defined by the five tuple: (Σ, Γ ,Q,δ, s). Let’s constrain this machine (call is FSTAR) a bit
and say the output alphabet consists of two signals: accept or reject (Γ = {A, R}). We say
that L(FSTAR) represents the language consisting of all strings that end with a accept (A)
output signal.

Prove that L(FSTAR) represents the class of regular languages.

Solution: The lovely thing about this problem is that it is harder the more you think
about it and the key is simply to address it in small chunks. So let’s break it down
into parts. First let’s define some notations about the machines we have available:

• DFA: M = (QM ,ΣM ,δM , sM , AM )

• NFA: N = (QN ,ΣN ,δN , sN , AN )

• FSTAR F = (QF ,ΣF , ΓF ,δF , sF ). For the transistion function let’s say δ(q, a) =
(q, b) where a ∈ Σ and b ∈ Γ

OK so to prove a machine represents regular languages, we must show two things:

(a) A FSTAR can represent any regular language.
(b) Any language that is accepted by a FSTAR is regular.

Part (a): A FSTAR can represent any regular language: Multiple ways to do
this but the easiest is by using a language transformation like you did in lab. If we
can show a construction that turns any DFA into a FSTAR, then we show that a FSTAR
can represent any regular language.

Doing this is relatively straightforward. Accept in a DFA is ending in an accept
state. Accept in a FSTAR is ending on an accept transition.

Hence, given a DFA (M), we’d like to construct a FSTAR (F) such that L(M) = L(F).
We define F as follows:

QF =QM

ΣF = ΣM

sF = sM

Γ = {A, R}
δF (q, a) = (δM (q, a), A) i f δM (q, a) ∈ AM

= (δM (q, a), R) i f δM (q, a) /∈ AM
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Part (b): Any language that is accepted by a FSTAR is regular. Little harder
this one. The immediate impulse is to turn the FSTAR into a NFA directly which is a
good impulse. But because you can have multiple transitions going to the same state
with mixed accept/reject signals, it’ll be tough to know what states to make an accept
state and what to make a reject state:

qz

qx

qy

1 : R

1 : A

So a bit of a problem since we can’t just turn qz into an accepting state. But what
if we add intermediate states on the path of the transitions like so:

qz

qi
x

qi
y

qx

qy

1

1

ε

ε

This NFA-part denotes the same thing as the FST-part above it. So let’s define the
NFA formally:
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QN =QF ×Σ∪QF Original states plus state per transition
Added states marked as (qF , a)

Original states marked as (qF ,�)
ΣN = ΣF

sN = sF

δN ((q,�), a) = (q, a) Original transitions go to intermediate states
δN ((q, a),ε) = (δF (q, a)[0],�) Intermediate states go to expected original states

AN = (q, a) if δF (q, a)[1] = A

Add intermediate states that
correspond to accepting transition

This construction shows that every language accepted by a FSTAR can also be
accepted by an NFA.

Summation: Parts (a) and (b) together show that FSTAR’s represent the class of
regular languages. �
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Alternate Problem
An all-NFA M is a 5-tuple (Q,Σ,δ, q0, F) that accepts x ∈ Σ∗ if every possible state
that M could be in after reading input x is a state from F . Note, this is in contrast
to an ordinary NFA that accepts a string if some state among these possible states is
a an accept state. Prove that all-NFAs recognize the class of regular languages.

Solution: To solve this problem we need to look at it from two directions. The first is
to show that, all-NFAs accept all regular languages. To show that, we can take any
DFA D which accepts the regular language L. We know that D accepts every string in
L and that there is exactly one path that it follows to the accepting state. So any DFA
can be considered as an all-NFA, and hence all-NFAs accepts regular languages.

On the other side, to show that any language that is accepted by the all-NFA is
regular, we first take an all-NFA M = (Q,Σ,δ, q0, F) and construct a standard NFA
M ′ = (Q′,Σ′,δ′, q′0, F ′) that accepts the same language as M . Since we construct M ′

to have atmost a single path for every computation, we follow a process that is very
similiar to the standard NFA to DFA construction, except for two differences in the
construction.

First, for every dying path that M takes, there is an equivalent ’dying’ path in M ′

as well. Second, if a string x ends at state q′ ∈Q′ , it is accepted by M ′ if and only if
ALL the states in q′ belong to the accepting states of M . This is to ensure that M ′

accepts the string x only if M , upon reading the same string x , ends all it’s branches
in accepting states. Note that E(S) denotes all the states that could be reached from S
using ε-transitions.

M ′:

Q′ := P(Q)

q′0 := {q0}

δ′(R, a) :=

¨

∅ if δ(r, a) =∅, for r ∈ R ,R ∈ Q’
{q ∈Q | q ∈ E(δ(r, a)) , for r ∈ R ,R ∈ Q’} otherwise

F ′ := P(F)

Since the standard NFA M ′ accepts the same language as the all-NFA M , any language
that is accepted by M is regular. Hence we have proved that all-NFAs recognize the
class of regular languages. �
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4. Prove this language is not regular by providing a fooling set. Be sure to include the fooling
set you construct is i) infinite and ii) a valid fooling set.

LP5 = {w|w such that |w|= dk
p

ke, for some natural numberk}

Hint: since this one is more difficult, we’ll even give you a fooling set that works:
try F = {0m6

|m ≥ 1}. We’ll also provide a bound that can help: the difference between
consecutive strings in the language, d(k+ 1)1.5e − dk1.5e, is bounded above and below as
follows

1.5
p

k− 1≤ d(k+ 1)1.5e − dk1.5e ≤ 1.5
p

k+ 3

All that’s left is you need to carefully prove that F is a fooling set for L.

Solution: Let F be the set {0m6
|m ∈ N}.

We can also write this as {0dk
p

ke|k = m4, m ∈ N}. Note that each element in F is
also an element in L.

Let x = 0m6 and y = 0n6 for some m< n.
Let z be the smallest string such that xz ∈ L. By the given bound, |z| ≤ 1.5m2 + 3.
Suppose for contradiction yz ∈ L. By the other side of the given bound, we would

need |z| ≥ 1.5n2 − 1. We can show both of these contraints on z can’t be satisfied,
since 1≤ m≤ n− 1, so

1.5m2+3≤ 1.5(n−1)2+3= 1.5(n2−2n+1)+3= 1.5n2−1+(5.5−3n)≤ 1.5n2−1

.
�

Solution: From my experience in office hours, I wanted to write another solution
which clarifies a few things (since this is a difficult problem).

First let’s start with the fooling set F = {0m6
|m ≥ 1}. This set is a subset of the

language LP5 = {0m6
|m ∈ N} but that’s ok for us. If we prove that F has infinite

distinguishable states, then it means LP5 has at least infinite distinguishable states
which is a problem for LP5 being regular.

So that’s the big picture but how do we get there? Well first let’s consider two
strings from the fooling set:

x = 0i6

y = 0 j6

for i < j. So both these strings are part of the original language (assuming k =
i4ork = j4). But what about the next string in their sequence? Is there another run
of zeros (z) that you can add to x such that xz ∈ LP5. More importantly if x and y
are distinguishable then it means yz /∈ LP5? If LGo f or thScienti f ic Inc is not regular, then
we need to prove that such a z cannot exist which let’s xz & yz ∈ LP5.
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So let’s do a Proof by Contradiction as we do with most fooling set problems.

• First let’s look at xz which is the next largest run of zeros after x that belongs to
LP5.
– Looking at the definition for LP5, in order for x ∈ LP5, k = i4 which give us

the string x = 0i6
= 0(i

4)1.5

.
– So the next largest run of 0’s in LP5 occurs when k = i4 + 1 which would

give us the string xz = 0(i
4+1)1.5

.
– This means that we can finding the length of z by

|xz| − |x |= |0(i
4+1)1.5

| − |0(i
4)1.5

|= (i4 + 1)1.5 − (i4 + 1)1.5 = |z|

– According to boundaries given in the problem this means that

1.5
p

i4 − 1= 1.5i2 − 1≤ |z| ≤ 1.5i2 + 3= 1.5
p

i4 + 3 (1)

• Next, because of the proof by contradiction we’re assuming yz ∈ LP5 as well.
This is the next largest run of zeros after y that is in LP5. Here we follow the
exact steps as above but with j instead of i.
– Looking at the definition for LP5, in order for y ∈ LP5, k = j4 which give us

the string y = 0 j6 = 0( j
4)1.5

.
– The next largest run of 0’s in LP5 occurs when k = j4 + 1 which would give

us the string yz = 0( j
4+1)1.5

.
– This means that we can finding the length of z by

|yz| − |y|= |0( j
4+1)1.5

| − |0( j
4)1.5

|= ( j4 + 1)1.5 − ( j4 + 1)1.5 = |z|

– According to boundaries given in the problem this means that

1.5 j2 − 1≤ |z| ≤ 1.5 j2 + 3 (2)

• So we got some boundaries for z defined by xz and yz shown below.

1.5i2 − 1 1.5i2 + 3|z| according to (1)

1.5 j2 − 1 1.5 j2 + 3|z| according to (2)

Now if the states of x and y are not distinguishable (i.e. both xz and yz can be
in LP5)), then there should be some value of z that both prefixes can follow to
an accept state. Namely,

1.5 j2 − 1≤ |z| ≤ 1.5i2 + 3 (3)

• But wait! Didn’t we say i < j? If i > 0 then (3) is impossible!
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• Therefore, there is run of zeroes for z where both xz and yz would be in LP5.
• x and y denote distinguishable states states of the language LP5.
• Because F is infinite, the DFA representing LP5 would require infinite states

which violates the definition of regular language and hence, LP5 can’t be regular.

�
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