
ECE 374 B Homework 4 Fall 2023

1. Solve the following recurrence relations. For parts (a) and (b), give an exact solution. For
parts (c) and (d), give an asymptotic one. In both cases, justify your solution.

(a) W (n) =W (n− 1) + 2 log(n) + 1; W (0) = 0

Solution: We obtain an exact closed-form solution for W (n) by unrolling. From
W (n) = (W (n− 2) + 2 log(n− 1) + 1)+2 log n+1=W (n−2)+2 (log n+ log(n− 1))+
2, we observe that

W (n) =W (n− k) + 2 (log n+ log(n− 1) + · · ·+ log(n− k+ 1)) + k

for 1≤ k ≤ n. Thus,

W (n) = 2 (log n+ log(n− 1) + · · ·+ log1) + n= 2 log(n!) + n.

■

(b) X (n) = 5X (n− 1) + 3; X (1) = 3

Solution: We obtain an exact closed-form solution for X (n) by unrolling. From
X (n) = 5(5X (n− 2) + 3) + 3 = 52X (n− 2) + 5 · 3+ 3, we observe that X (n) =
5kX (n− k) + 3(5k−1 + · · ·+ 51 + 50) for 1≤ k ≤ n− 1. Thus,

X (n) = 3(5n−1 + 5n−2 + · · ·+ 51 + 1) =
3(5n − 1)

5− 1
=

3
4
(5n − 1).

■

(c) Y (n) = Y (n/2) + 2Y (n/3) + 3Y (n/4) + n2

Solution: We obtain a tight asymptotic bound for Y (n) using a recursion tree.
Observe that the sum of node values in the recursion tree for Y (n) for any complete
level k is
� 95

144

�k
n2. Since the sum over the levels is a decreasing geometric

series, Y (n) is dominated by the root n2. This tells us that Y (n) = O(n2).
On the other hand, n2 is a lower bound of Y (n) by definition, giving us

T (n) = Ω(n2).
We conclude Y (n) = Θ(n2). ■

1

ECE 374 B Homework 4 Fall 2023

(d) Z(n) = Z(n/15) + Z(n/10) + 2Z(n/6) +
p

n

Solution: We obtain lower and upper bounds on the asymptotic solution for
Y (n) using a recursion tree. We observe that the sum of node values for any
complete level k in the recursion tree for Z(n) is (

p

1/15+
p

1/6+ 2/
p

6)k
p

n.
Since the level-by-level sum is an increasing geometric series, Z(n) is dominated
by the sum of the nodes values in the bottom level of its recursion tree.

To obtain an upper bound for Z(n), we overestimate Z(n) by extending the
recursion tree down to the level of the deepest leaf. The deepest leaf is at level
Θ(log6 n), so we can upper bound the number of leaves in the recursion tree
as O(4log6 n) or equivalently, O(nlog6 4). Since the leaves correspond to the base
case, the label on each leaf is O(1). Thus, Z(n) = O(nlog6 4).

To obtain a lower bound, we underestimate Z(n) by extending the tree down
to the level of the shallowest leaf. The shallowest leaf is at level Θ(log15 n), so we
can lower bound the number of leaves as Ω(4log15 n) or equivalently, Ω(nlog15 4).

Therefore, we conclude that Z(n) = Ω(nlog15 4) and Z(n) = O(nlog6 4).
On the other hand, we can obtain the tight asymptotic bound by applying

the Akra-Bazzi method. The equation (1/15)ρ + (1/10)ρ + 2(1/6)ρ = 1 has
solution ρ ≈ 0.6596. We have

∫ n

1

f (u)
uρ+1

du=
2u

1
2−p

1− 2ρ

�

�

�

�

�

n

u=1

=
2n

1
2−ρ − 2

1− 2ρ
= Θ(n

1
2−ρ).

Therefore, we get
Z(n) = Θ
�

nρ
�

1+Θ(n
1
2−ρ)
��

and Z(n) = Θ(nρ). ■

2. Suppose you are given a stack of n pancakes of different sizes. You want to sort the
pancakes so that smaller pancakes are on top of larger pancakes. The only operation you
can perform is flip - insert a spatula under the top k pancakes, for some integer k between
1 and n, and flip them all over.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using O(n) flips. Exactly
how many flips does your algorithm perform in the worst case? [Hint: This problem
has nothing to do with the Tower of Hanoi.]

2

ECE 374 B Homework 4 Fall 2023

Solution: We can solve this problem with recursion.
In each recursive step, we can place the largest pancake to the bottom and

recurse to the stack above it.
We can represent the stack of pancakes with A[1..n], where A[1] represents

the pancake at the top and A[n] represents the pancake at the bottom.
Suppose that in each recursive step, we can access and modify the original

stack of pancakes. The algorithm PancakeSort(A[1..n], k) goes as follows:

if (k > 1)
i = FindLargestPancake(A[1..n], k)
flip(A[1..n], i) //Place the largest pancake to the top
flip(A[1..n], k) Place the largest pancake to the bottom
PancakeSort(A[1..n], k− 1)

end if

To solve the problem, we can call PancakeSort(A[1..n], n).
The algorithm performs 2 ∗ (n− 1) flips in the worst case. ■

(b) For every positive integer n, describe a stack of n pancakes that requires Ω(n) flips to
sort.

Solution: There are many solutions to this problem. Here is one example.
Given a stack of n pancakes where each pancake has a different size, create

a new stack from empty in this order: append the largest pancake, append
the smallest pancake, append the second largest pancake, append the second
smallest pancake, ...

This stack requires Ω(n) flips to sort.
■

(c) Now suppose one side of each pancake is burned. Describe an algorithm to sort an
arbitrary stack of n pancakes, so that the burned side of every pancake is facing down,
using O(n) flips. Exactly how many flips does your algorithm perform in the worst
case?

Solution: We can solve this problem by modifying the PancakeSort algorithm.
In each recursive step, we want to ensure that the burned side of the largest

pancake is facing up before placing the pancake to the bottom.
The algorithm BurnedPancakeSort(A[1..n], k) goes as follows:

3

ECE 374 B Homework 4 Fall 2023

if (k > 1)
i = FindLargestPancake(A[1..n], k)
flip(A[1..n], i) //Place the largest pancake to the top
if BurnedSideFacingDown(A[1])

flip(A[1..n], 1)
Make sure the burned side is facing up

end if
flip(A[1..n], k) Place the largest pancake to the bottom
PancakeSort(A[1..n], k− 1)

end if

To solve the problem, we can call BurnedPancakeSort(A[1..n], n).
The algorithm performs 3 ∗ (n− 1) flips in the worst case. ■

4

ECE 374 B Homework 4 Fall 2023

3. Suppose we are given an array A[1 .. n] of n integers, which could be positive, negative, or
zero, sorted in increasing order so that A[1]≤ A[2]≤ · · · ≤ A[n]. Suppose we wanted to
count the number of times some integer value x occurs in A. Describe an algorithm (as fast
as possible) which returns the number of elements containing value x .

Solution: Dumb Approach: We could simply iterate through the array and count
the number of times x appears. This would take O(n) time.

Better Approach: First we can use binary search to find an instance of x . Then
since A is sorted, All values of x appear next to one-another. Hence, if we find one
instance of x , we can interate over the block of x instances and count the size. This
will take O(log(n) + k) time where k is the number of array elements containing x .
The one issue is that if k is large, i.e. on the order of n, then the runtime reduces to
O(log(n) + k) = O(log(n) +O(n)) = O(n).

Best Approach: We can slightly modify binary search to find the leftmost array
element that contains x (the left-bound of the array block):

FindLeftBound(A[1 .. n], x , i):
if A[1] = x

return i
else

if A[n/2]≥ x
return FindLeftBound(A[1, ..., n/2], x , i)

else
return FindLeftBound(A[n/2+ 1, ..., n], x , i + n/2)

i is a variable to keep track of the original position of the sub-array beign currently
evaluated. We do the same to find the right bound and subtract the two values from
one another to find the number of instances of x . ■

5

ECE 374 B Homework 4 Fall 2023

4. Given an arbitrary array A[1..n], describe an algorithm to determine in O(n) time whether
A contains more than n/4 copies of any value.

Solution: The algorithm is formally described below. We use the fact that the selection
problem can be solved in linear time. That is, given an unsorted array A of n values and
an index j between 1 and n, we can find the j-th ranked element in A in O(n) time. We
denote this black box algorithm as Select(A[1..N], j) which returns the value of the
j-th ranked element in A. To determine whether an element appears more than n/4
times, we select values with rank n/4, 2n/4, and 3n/4. If an element x appears more
than n/4 times, it follows that at least one of these selected values is equal to x . Thus,
we can scan and count the number of occurrences of each of these selected values.

Contains4Duplicates(A[1 .. N])
x1← Select(A, ⌈N/4⌉)
x2← Select(A, ⌈2N/4⌉)
x3← Select(A, ⌈3N/4⌉)
for (i← 1 : 3)

count← 0 for (j← 1 : N)
if (A[j] = x i) then count++1

if (count> N/4) then return True
return False

Since Select runs in O(n) time, finding x1, x2, and x3 also takes O(n) time. Looping
over the array of length n a total of 3 times takes O(n) time. Thus, this algorithm runs
in the required O(n) time.

To prove correctness of the algorithm, we must show that if an element appears
more than n/4 times, it must be at least one of the selected values with rank ⌈n/4⌉,
⌈2n/4⌉, or ⌈3n/4⌉. Assume an element x appears i > n/4 times. Then, there must be
consecutive ranks j, ..., j + i − 1 with value x . Without loss of generality, consider the
number of values of rank between ⌈n/4⌉ and ⌈2n/4⌉ (excluding the outside values).
Since ⌈n/4⌉ ≥ n/4 and ⌈2n/4⌉ ≤ 2n/4+ 1, the maximum number of values is given
by (2n/4+ 1)− (n/4)− 1 = n/4. Thus, there are at most only n/4 spots for more
than n/4 values. By pigeonhole principle, one of the selected values must be equal to
x . ■

6

