Homework 5

- Submit your solutions electronically on the course Gradescope site as PDF files. If you plan to typeset your solutions, please use the ETEX solution template on the course web site. If you must submit scanned handwritten solutions, please use a black pen on blank white paper and a high-quality scanner app (or an actual scanner, not just a phone camera). We will mark difficult to read solutions as incorrect and move on.
- Every homework problem must be done individually. Each problem needs to be submitted to Gradescope before 6AM of the due data which can be found on the course website: https://ecealgo.com/homeworks.html.
- For nearly every problem, we have covered all the requisite knowledge required to complete a homework assignment prior to the "assigned" date. This means that there is no reason not to begin a homework assignment as soon as it is assigned. Starting a problem the night before it is due a recipe for failure.

Policies to keep in mind

- You may use any source at your disposal-paper, electronic, or human-but you must cite every source that you use, and you must write everything yourself in your own words. See the academic integrity policies on the course web site for more details.
- Being able to clearly and concisely explain your solution is a part of the grade you will receive. Before submitting a solution ask yourself, if you were reading the solution without having seen it before, would you be able to understand it within two minutes? If not, you need to edit. Images and flow-charts are very useful for concisely explain difficult concepts.

See the course web site (https://ecealgo.com) for more information.
If you have any questions about these policies, please don't hesitate to ask in class, in office hours, or on Piazza.

Extra Instructions Solutions to a dynamic programming problem have (at minimum) three things:

- A recurrence relation
- A brief description of what your recurrence function represents and what each case represents.
- A brief description of the memory element/storage and how it's filled in.

1. An array $A[0 . . n-1]$ of n distinct numbers is bitonic if there are unique indices i and j such that $A[(i-1) \bmod n]<A[i]>A[(i+1) \bmod n]$ and $A[(j-1) \bmod n]>A[j]<$ $A[(j+1) \bmod n]$. In other words, a bitonic sequence either consists of an increasing sequence followed by a decreasing sequence, or can be circularly shifted to become so. For example,

Describe and analyze an algorithm to find the index of the smallest element in a given bitonic array $A[0 . . n-1]$ in $O(\log n)$ time. You may assume that the numbers in the input array are distinct. For example, given the first array above, your algorithm should return 6 , because $A[6]=1$ is the smallest element in that array.
2. Suppose we have a river and on either side are a number of cities numbered from 1 to n (North side: $N[1 \ldots n]$, South side: $S[1 \ldots n]$). The city planner wants to connect certain cities together using bridges and has a list of the desired crossings (x is a $2 \times k$ array where k is the number of planned bridges) . Unfortunately, as we know, bridges cannot cross one-another over water so the city planner must focus on building the most bridges from his plan that do not intersect. Describe an algorithm that finds the maximum number of non-intersecting bridges.

Figure 1. Assuming $n=6, x=\left[\begin{array}{lllll}1 & 5 & 6 & 2 & 3 \\ 4 & 6 & 1 & 2 & 5\end{array}\right]$, then the output should be 3 as shown above.
3. In lecture we defined the recurrence of the longest-increasing-subsequence(LIS) problem as:

$$
L I S_{L E C}(i, j)= \begin{cases}0 & i=0 \tag{1}\\
\operatorname{LIS_{LEC}(i-1,j)} & A[i] \geq A[j] \\
\max \left\{\begin{array}{cl}
\operatorname{LIS} \\
L E C \\
1+\operatorname{LI} S_{L E C}(i-1, i)
\end{array}\right. & A[i]<A[j]\end{cases}
$$

But when we worked out the problem in lab looks like:

$$
L I S_{L A B}(i, j)= \begin{cases}0 & \text { if } i>n \tag{2}\\
L I S_{L A B}(i+1, j) & \text { if } i \leq n \text { and } A[j] \geq A[i] \\
\max \left\{\begin{array}{c}
L I S_{L A B}(i+1, j) \\
1+L I S_{L A B}(i+1, i)
\end{array}\right\} & \text { otherwise }\end{cases}
$$

Is one of them wrong? If not, what's the difference? Your solution should be a simple, short, english description of each recurrence. No long proofs for correctness are necessary. This is to make sure you understand how to describe a function (and no, saying "LIS returns the longest increasing subsequence length." is not a sufficient description).
4. A subsequence is any sequence obtained from a sequence by taking some of its elements while keeping them in the same order. For instance, the strings 7, F4 and WTF374 are all subsequences of the string WTF374. A supersequence is any sequence obtained from a sequence by adding more elements, keeping the elements of the original sequence in the same order. For example, WTF374, SMTWTFS247374 and WTF374473FTW are all supersequences of the string WTF374. For each part, we want efficient (i.e., polynomial time) algorithms.
(a) Suppose $X[1 . . m]$ and $Y[1 . . n]$ are two arrays. A common subsequence of X and Y is another sequence that is a subsequence of both X and Y. Describe an algorithm to compute the length of a longest common subsequence of two given arbitrary arrays A and B.
(b) Suppose $X[1 . . m]$ and $Y[1 . . n]$ are two arrays. A common supersequence of X and Y is a sequence that contains both X and Y as subsequences. Describe an algorithm to compute the length of a shortest common supersequence of two given arbitrary arrays A and B.
(c) A sequence $W[1 . . n]$ of numbers is weakly increasing if each element is larger than the average of its two previous elements (i.e., $2 \cdot W[i]>W[i-1]+W[i-2]$ for all $i>2$). Describe an algorithm to compute the length of a longest weakly increasing subsequence of a given arbitrary array A of integers.
(d) A sequence $O[1 . . n]$ of numbers is oscillating if $O[i]>O[i+1]$ for all odd i and $O[i]<O[i+1]$ for all even i. Describe an algorithm to compute the length of a shortest oscillating supersequence of a given arbitrary array A of integers.

