
ECE 374 B - Fall 2023

Homework 5

• Submit your solutions electronically on the course Gradescope site as PDF files. If
you plan to typeset your solutions, please use the LATEX solution template on the course
web site. If you must submit scanned handwritten solutions, please use a black pen on
blank white paper and a high-quality scanner app (or an actual scanner, not just a phone
camera). We will mark difficult to read solutions as incorrect and move on.

• Every homework problem must be done individually. Each problem needs to be
submitted to Gradescope before 6AM of the due data which can be found on the course
website: https://ecealgo.com/homeworks.html.

• For nearly every problem, we have covered all the requisite knowledge required to
complete a homework assignment prior to the “assigned” date. This means that there
is no reason not to begin a homework assignment as soon as it is assigned. Starting a
problem the night before it is due a recipe for failure.

Policies to keep in mind

• You may use any source at your disposal—paper, electronic, or human—but you must
cite every source that you use, and you must write everything yourself in your own words.
See the academic integrity policies on the course web site for more details.

• Being able to clearly and concisely explain your solution is a part of the grade you
will receive. Before submitting a solution ask yourself, if you were reading the solution
without having seen it before, would you be able to understand it within two minutes? If
not, you need to edit. Images and flow-charts are very useful for concisely explain difficult
concepts.

See the course web site (https://ecealgo.com) for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

https://ecealgo.com/homeworks.html
https://ecealgo.com

ECE 374 B Homework 5 Fall 2023

Extra Instructions Solutions to a dynamic programming problem have (at minimum) three
things:

• A recurrence relation

• A brief description of what your recurrence function represents and what each case
represents.

• A brief description of the memory element/storage and how it’s filled in.

1. An array A[0 .. n − 1] of n distinct numbers is bitonic if there are unique indices i and
j such that A[(i − 1)mod n] < A[i] > A[(i + 1)mod n] and A[(j − 1)mod n] > A[j] <
A[(j + 1)mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

4 6 9 8 7 5 1 2 3 is bitonic, but

3 6 9 8 7 5 1 2 4 is not bitonic.

Describe and analyze an algorithm to find the index of the smallest element in a given
bitonic array A[0 .. n− 1] in O(log n) time. You may assume that the numbers in the input
array are distinct. For example, given the first array above, your algorithm should return 6,
because A[6] = 1 is the smallest element in that array.

2. Suppose we have a river and on either side are a number of cities numbered from 1 to n
(North side: N[1 . . . n], South side: S[1 . . . n]). The city planner wants to connect certain
cities together using bridges and has a list of the desired crossings (x is a 2× k array where
k is the number of planned bridges) . Unfortunately, as we know, bridges cannot cross
one-another over water so the city planner must focus on building the most bridges from
his plan that do not intersect. Describe an algorithm that finds the maximum number of
non-intersecting bridges.

Figure 1. Assuming n= 6, x =
�

1 5 6 2 3
4 6 1 2 5

�

, then the output should be 3 as shown above.

1

ECE 374 B Homework 5 Fall 2023

3. In lecture we defined the recurrence of the longest-increasing-subsequence(LIS) problem
as:

LISLEC(i, j) =



















0 i = 0

LISLEC(i − 1, j) A[i]≥ A[j]

max

¨

LISLEC(i − 1, j)
1+ LISLEC(i − 1, i)

A[i]< A[j]
(1)

But when we worked out the problem in lab looks like:

LISLAB(i, j) =



















0 if i > n

LISLAB(i + 1, j) if i ≤ n and A[j]≥ A[i]

max

¨

LISLAB(i + 1, j)
1+ LISLAB(i + 1, i)

«

otherwise
(2)

Is one of them wrong? If not, what’s the difference? Your solution should be a simple,
short, english description of each recurrence. No long proofs for correctness are necessary.
This is to make sure you understand how to describe a function (and no, saying "LIS returns
the longest increasing subsequence length." is not a sufficient description).

4. A subsequence is any sequence obtained from a sequence by taking some of its elements
while keeping them in the same order. For instance, the strings 7, F4 and W T F374 are
all subsequences of the string W T F374. A supersequence is any sequence obtained from a
sequence by adding more elements, keeping the elements of the original sequence in the
same order. For example, W T F374, SM TW T FS247374 and W T F374473F TW are all
supersequences of the string W T F374. For each part, we want efficient (i.e., polynomial
time) algorithms.

(a) Suppose X [1 .. m] and Y [1 .. n] are two arrays. A common subsequence of X and Y is
another sequence that is a subsequence of both X and Y . Describe an algorithm to
compute the length of a longest common subsequence of two given arbitrary arrays A
and B.

(b) Suppose X [1 .. m] and Y [1 .. n] are two arrays. A common supersequence of X and Y
is a sequence that contains both X and Y as subsequences. Describe an algorithm to
compute the length of a shortest common supersequence of two given arbitrary arrays
A and B.

(c) A sequence W [1 .. n] of numbers is weakly increasing if each element is larger than
the average of its two previous elements (i.e., 2 ·W [i]>W [i − 1] +W [i − 2] for all
i > 2). Describe an algorithm to compute the length of a longest weakly increasing
subsequence of a given arbitrary array A of integers.

(d) A sequence O[1..n] of numbers is oscillating if O[i] > O[i + 1] for all odd i and
O[i] < O[i + 1] for all even i. Describe an algorithm to compute the length of a
shortest oscillating supersequence of a given arbitrary array A of integers.

2

