
ECE 374 B Homework 5 Fall 2023

1. An array A[0 .. n − 1] of n distinct numbers is bitonic if there are unique indices i and
j such that A[(i − 1)mod n] < A[i] > A[(i + 1)mod n] and A[(j − 1)mod n] > A[j] <
A[(j + 1)mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

4 6 9 8 7 5 1 2 3 is bitonic, but

3 6 9 8 7 5 1 2 4 is not bitonic.

Describe and analyze an algorithm to find the index of the smallest element in a given
bitonic array A[0 .. n− 1] in O(log n) time. You may assume that the numbers in the input
array are distinct. For example, given the first array above, your algorithm should return 6,
because A[6] = 1 is the smallest element in that array.

Solution: Let BitonicMin(A[0 .. n− 1]) denote the index of the smallest element in
a bitonic array A[0 .. n− 1]. The pseudocode for an algorithm corresponding to this
English description is given below:

BitonicMin(A[0 .. n− 1]):
if n< 1010:

use brute force
m← ⌊n/2⌋

if

A[m]< A[m+ 1]< A[n− 1]< A[0] or
A[m]> A[m+ 1]> A[n− 1]> A[0] or
A[0]< A[n− 1] and A[m]< A[m+ 1]
return BitonicMin(A[0 .. m])

else:
return BitonicMin(A[m+ 1 .. n− 1])

The correctness of this algorithm follows from the following claim.

Claim 1. Fix an arbitrary bitonic array A[0 .. n− 1]. BitonicMin(A) computes the
index of the minimum element in A.

Proof: We proceed by induction on n. Fix an integer n ≥ 0 and a bitonic array
A[0 .. n − 1]. If n < 1010, BitonicMin(A) computes the index of the minimum
element in A because "use brute force" does. Suppose n ≥ 1010, m = ⌊n/2⌋ and
BitonicMin(A[i .. j]) computes the index of the minimum element in any bitonic
subarray A[i .. j] of A for any i and j such that j − i < n− 1. In the following analysis,
we denote concatenation (not product!) by •. We have the following cases:

• A[m]< A[m+ 1]< A[n− 1]< A[0]. By the definition of bitonic, there must be
unique indices 0 ≤ i ≤ j ≤ m such that A[j .. n− 1] • A[0 .. i] is increasing and
A[i .. j] is decreasing. Observe that such an index j is the index the minimum
element in this case.

• A[m]> A[m+ 1]> A[n− 1]> A[0]. By the definition of bitonic, there must be
unique indices 0≤ i ≤ j ≤ m such that A[i .. j] is increasing and A[j .. n]•A[0 .. i]

1

ECE 374 B Homework 5 Fall 2023

is decreasing. Observe that such an index i is the index the minimum element in
this case.

• A[m]< A[m+1] and A[0]< A[n−1]. By the definition of bitonic, there must be
unique indices 0 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1 such that A[i .. j] is increasing
and A[j .. n] • A[1 .. i] is decreasing. Observe that such an index i is the index
the minimum element in this case.

The above analysis gives that the above conditions are sufficient for the minimum
element in A to be in A[0 .. m]. By symmetry, we immediately have that these conditions
are necessary and sufficient for the minimum element in A to be in A[0 .. m]. Since

• A[0 .. m] and A[m+ 1 .. n− 1] are bitonic,
• m−1< n−1 and n−1−(m+1) = n−m< n−1 (i.e., the recursive calls receive

strictly smaller inputs) and
• 0≤ m and m+ 1≤ n− 1 (i.e., the recursive calls receive only valid inputs),

BitonicMin(A[0 .. m]) and BitonicMin(A[m+ 1 .. n− 1]) compute the index of the
minimum element in A[0 .. m] and A[m+ 1 .. n− 1], respectively. This completes the
proof. □

Computing BitonicMin(A) gives the index of the minimum element in A. Since this
algorithm is binary search, it requires time O(log n).

2. Suppose we have a river and on either side are a number of cities numbered from 1 to n
(North side: N[1 . . . n], South side: S[1 . . . n]). The city planner wants to connect certain
cities together using bridges and has a list of the desired crossings (x is a 2× k array where
k is the number of planned bridges) . Unfortunately, as we know, bridges cannot cross
one-another over water so the city planner must focus on building the most bridges from
his plan that do not intersect. Describe an algorithm that finds the maximum number of
non-intersecting bridges.

Figure 1. Assuming n= 6, x =
�

1 5 6 2 3
4 6 1 2 5

�

, then the output should be 3 as shown above.

2

ECE 374 B Homework 5 Fall 2023

Solution: We can solve this problem by applying the LIS algorithm. Since the cities
on the north and south banks are in ascending order of index N[1 . . . n] and we can
not overlap bridges, we can sort either the South cites or the North cities in the given
2D bridges array first. Then we can apply the LIS algorithm on the unsorted part of
the 2D array. Based on the results from the LIS algorithm, we can connect the bridges
that are present in those combinations.

Given x =

�

1 5 6 2 3
4 6 1 2 5

�

Sorting based on North Cities, we get x =

�

1 2 3 5 6
4 2 5 6 1

�

After LIS is applied on the South Cities, we get
�

2 5 6
�

and the count is 3.
Pseodo Code:

BuildBridge(x , n):
sortedMatrix = Sort(x , 1) 〈〈Sorting the matrix x based on the first row〉〉
A= sor tedMatrix[2] 〈〈We are picking the bottom row of the matrix〉〉
bridgeCount = LIS(A)
return bridgeCount

TLDR: Sort then LIS. ■

3

ECE 374 B Homework 5 Fall 2023

3. In lecture we defined the recurrence of the longest-increasing-subsequence(LIS) problem
as:

LISLEC(i, j) =

0 i = 0

LISLEC(i − 1, j) A[i]≥ A[j]

max

¨

LISLEC(i − 1, j)
1+ LISLEC(i − 1, i)

A[i]< A[j]
(1)

But when we worked out the problem in lab looks like:

LISLAB(i, j) =

0 if i > n

LISLAB(i + 1, j) if i ≤ n and A[j]≥ A[i]

max

¨

LISLAB(i + 1, j)
1+ LISLAB(i + 1, i)

«

otherwise
(2)

Is one of them wrong? If not, what’s the difference? You solution so be a simple, short,
english description of each recurrence. No long proofs for correctness are necessary. This
is to make sure you understand how to describe a function (and no saying "LIS returns the
longest increasing subsequence length." is not a sufficient description).

Solution: Yes they are both correct, they are simply computing the results from
different directions:

• LISLEC(i, j) returns the largest possible increasing subsequence in the prefix
array A[1 . . . i] assuming none of the values in that subsequence are larger than
A[j]. That is why we state from the smallest possible prefix array i = 1 and work
our way up.

• LISLAB(i, j) returns the largest possible increasing subsequence in the suffix
array A[i . . . n] assuming none of the values in that subsequence are smaller than
A[j]. That is why the start from the largest possible

■

4

ECE 374 B Homework 5 Fall 2023

4. A subsequence is any sequence obtained from a sequence by taking some of its elements
while keeping them in the same order. For instance, the strings 7, F4 and W T F374 are
all subsequences of the string W T F374. A supersequence is any sequence obtained from a
sequence by adding more elements, keeping the elements of the original sequence in the
same order. For example, W T F374, SM TW T FS247374 and W T F374473F TW are all
supersequences of the string W T F374. For each part, we want efficient (i.e., polynomial
time) algorithms.

(a) Suppose X [1 .. m] and Y [1 .. n] are two arrays. A common subsequence of X and Y is
another sequence that is a subsequence of both X and Y . Describe an algorithm to
compute the length of a longest common subsequence of two given arbitrary arrays A
and B.

Solution: Let LCS(i, j) denote the length of a longest common subsequence of
A[i .. m] and B[j .. n]. LCS obeys the following recurrence:

LCS(i, j) =

0 if i > m or j > n

max

LCS(i + 1, j)
LCS(i , j + 1)

1+ LCS(i + 1, j + 1)

if i ≤ m, j ≤ n and A[i] = B[j]

max

¨

LCS(i + 1, j)
LCS(i , j + 1)

«

otherwise

We need to compute LCS(1, 1). We can memoize the function LCS into an array
LCS[1 .. m+ 1, 1 .. n+ 1]. Each entry LCS[i, j] depends only on entries in the
next row LCS[i+1, ·] or the next column LCS[·, j+1], so we can fill the array in
reverse row-major order, scanning bottom to top in the outer loop, and right to
left in the inner loop.

LCS(A[1 .. m],B[1 .. n]):
for i from 1 to m+ 1: 〈〈Base cases〉〉

LCS[i, n+ 1]← 0
for j from 1 to n+ 1: 〈〈Base cases〉〉

LCS[m+ 1, j]← 0
for i← m down to 1:

for j← n down to 1:
LCS[i, j]←max {LCS[i, j + 1],LCS[i + 1, j]}
if A[i] = B[j]:

LCS[i, j]←max {LCS[i, j], 1+ LCS[i + 1, j + 1]}
return LCS[1, 1]

The resulting algorithm runs in O(mn) time, where m and n are the number of
elements in A and B, respectively. ■

5

ECE 374 B Homework 5 Fall 2023

(b) Suppose X [1 .. m] and Y [1 .. n] are two arrays. A common supersequence of X and Y
is a sequence that contains both X and Y as subsequences. Describe an algorithm to
compute the length of a shortest common supersequence of two given arbitrary arrays
A and B.

Solution: Let SCS(i, j) denote the length of a shortest common supersequence
of A[i .. m] and B[j .. n]. SCS obeys the following recurrence:

SCS(i, j) =

n− j + 1 if i > m

m− i + 1 if i ≤ m and j > n

min

1+ SCS(i + 1, j)
1+ SCS(i , j + 1)
1+ SCS(i + 1, j + 1)

if i ≤ m, j ≤ n and A[i] = B[j]

min

¨

1+ SCS(i + 1, j)
1+ SCS(i , j + 1)

«

otherwise

We need to compute SCS(1, 1). We can memoize the function SCS into a two-
dimensional array SCS[1 .. m+ 1,1 .. n+ 1]. Each entry SCS[i, j] depends only
on entries in the next row SCS[i + 1, ·] or the next column SCS[·, j + 1], so we
can fill the array in reverse row-major order, scanning bottom to top in the outer
loop, and right to left in the inner loop.

SCS(A[1 .. m],B[1 .. n]):
for i← 1 to m+ 1: 〈〈Base cases〉〉

SCS[i, n+ 1]← m+ 1− i
for j← 1 to n+ 1: 〈〈Base cases〉〉

SCS[m+ 1, j]← n+ 1− j
for i← m to 1:

for j← n to 1:
SCS[i, j]←min {1+ SCS[i, j + 1], 1+ SCS[i + 1, j]}
if A[i] = B[j]:

SCS[i, j]←min {SCS[i, j], 1+ SCS[i + 1, j + 1]}
return SCS[1,1]

The resulting algorithm runs in O(mn) time, where m and n are the number of
elements in A and B, respectively. ■

6

ECE 374 B Homework 5 Fall 2023

Solution: The length of the shortest common supersequence can also be found
via the following algorithm, where LCS is the algorithm defined in part (a):

SCS(A[1 .. m],B[1 .. n]):
return m+ n− LCS(A, B)

The correctness of this algorithm follows from the following claim:
Claim 2. Fix arbitrary arrays A[1 .. m] and B[1 .. n] and define L and S to be
a length of the longest common subsequence and a shortest common super-
sequence, respectively, of A and B. Then L + S = m+ n.

Proof: Suppose LCS is a longest common subsequence of A and B. Adding the
m+ n− 2L elements of A and B not used in LCS to LCS while preserving their
order relative to the elements in LCS necessarily gives a supersequence of A and
B of length m+ n− L, giving that S ≤ m+ n− L. On the other hand, we have
that S ≥ m+ n− L, because suppose otherwise. Then there is a supersequence
of A and B of length m+ n− L′ < m+ n− L for some integer L′ ≥ 0. For this to
happen, there must be a subsequence of length L′ contained in A and B. In other
words, there must be a common subsequence of length L′ in A and B, which is a
contradiction as L by definition is the length of a longest common subsequence
of A and B and L < L′. The two inequalities above together prove the claim. □

Because LCS(A, B) in the above algorithm requires time O(mn), the above
algorithm runs in O(mn) time, where m and n are the number of elements in A
and B, respectively.

7

ECE 374 B Homework 5 Fall 2023

(c) A sequence W [1 .. n] of numbers is weakly increasing if each element is larger than
the average of its two previous elements (i.e., 2 ·W [i]>W [i − 1] +W [i − 2] for all
i > 2). Describe an algorithm to compute the length of a longest weakly increasing
subsequence of a given arbitrary array A of integers.

Solution: We use the approach used in the solution for the longest convex
subsequence problem in the lab on 3/4 to solve this problem. Let LWIS(i, j)
denote the length minus 1 of a longest weakly increasing subsequence of a
nonempty array A[i .. n] whose first element is A[i] and whose second element
(if any) is A[j]. LWIS obeys the following recurrence:

LWIS(i, j) = 1+max {LWIS(j, k) | j < k ≤ n and 2 · A[k]> A[j] + A[i]}

Here we define max∅= 0; this gives us a working base case. The final answer
is given by

LWIS(A[1 .. n]) =

(

0 if n= 0

1+ max
1≤i< j≤n

LWIS(i, j) otherwise .

We can memoize the function LWIS into a two-dimensional array LWIS[1 .. n−
1,2 .. n], which we can fill in reverse row-major order in O(n3) time as follows:

LWIS(A[1 .. n]):
if n= 0: 〈〈Base case of LWIS(A[1 .. n])〉〉

return 0
ℓ← 1
for i← n− 1 down to 1:

for j← n down to i + 1:
LWIS[i, j]← 0 〈〈Base case of LWIS(i, j)〉〉
for k← j + 1 to n:

if 2A[k]> A[j] + A[i]:
LWIS[i, j]←max {LWIS[i, j], 1+ LWIS[j, k]}

ℓ←max {ℓ,LWIS[i, j] + 1}
return ℓ

■

8

ECE 374 B Homework 5 Fall 2023

(d) A sequence O[1..n] of numbers is oscillating if O[i] > O[i + 1] for all odd i and
O[i] < O[i + 1] for all even i. Describe an algorithm to compute the length of a
shortest oscillating supersequence of a given arbitrary array A of integers.

Solution: The idea of the mutual recurrences below is to walk along the array
from left to right. Either the recurrence adds only the current element of the
array to the oscillating supersequence or in addition adds an additional element
with value∞ and −∞ before the current element. It then maximizes the lengths
over all oscillating supersequences it considers. Add a sentinel value A[0] = −∞.
We define two functions:
• Let SOS+(j) denote the length of a shortest oscillating supersequence of

A[j .. n]whose first element (if any) is larger than A[j−1] and whose second
element (if any) is smaller than its first.

• Let SOS−(j) denote the length of a shortest oscillating supersequence of
A[j .. n] whose first element (if any) is smaller than A[j − 1] and whose
second element (if any) is larger than its first.

SOS+ and SOS− satisfy the following mutual recurrences:

SOS+(j) =

0 if j > n

min

¨

1+ SOS−(j + 1)
2+ SOS+(j + 1)

«

if j ≤ n and A[j]> A[j − 1]

2+ SOS+(j + 1) otherwise

SOS−(j) =

0 if j > n

min

¨

1+ SOS+(j + 1),
2+ SOS−(j + 1)

«

if j ≤ n and A[j]< A[j − 1]

2+ SOS−(j + 1) otherwise
We need to compute SOS+(1). We can memoize these functions into one-
dimensional arrays SOS+[1 .. n+ 1] and SOS−[1 .. n+ 1]. Each entry SOS±[i, j]
depends only on the next entry of either the same array or the other array. So
we can fill both arrays in parallel, scanning right to left.

SOS(A[1 .. n]):
A[0]←−∞ 〈〈Add a sentinel〉〉
SOS+[n+ 1]← 0 〈〈Base case〉〉
SOS−[n+ 1]← 0 〈〈Base case〉〉
for j← n down to 1:

SOS+[j]← 2+ SOS+[j + 1]
SOS−[j]← 2+ SOS−[j + 1]
if A[j]> A[j − 1]:

SOS+[j]←min
�

SOS+[j], 1+ SOS−[j + 1]
	

if A[j]< A[j − 1]:
SOS−[j]←min

�

SOS−[j], 1+ SOS+[j + 1]
	

return SOS+[1]

The resulting algorithm runs in O(n) time. ■

9

