
ECE 374 B Homework 6 Fall 2023

1. Largest Square of 1’s You are given a n× n bitonic array A and the goal is to find the set
of elements within that array that form a square filled with only 1’s.

































































j→

←
i

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

Figure 1: Example: The output is the sidelength of the largest square of 1’s (4 in the case of the
graph above, yes there can be multiple squares of the greatest size).

Solution: We observe that a square of size n is composed of 3 squares of size n− 1
plus the corner piece (assuming it’s value is a 1). For example we can re-imagine the
example above as:

































































j→

←
i

1 1 1 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 1 0
1 1 1 1 0 0 1 1 0 1
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 1 1 1 0
0 1 1 1 1 0 1 1 1 0

So we can construct the recurrence as follows:

LSq(i, j) =























0 if A[i, j] = 0 (1a)
A[i, j] if i = n or j = n (1b)

1+min







LSq(i + 1, j)
LSq(i, j + 1)
LSq(i + 1, j + 1)







otherwise (1c)

LSq(i, j) describes the maximum square of 1’s whose top left corner is at coordinate
index [i, j]. Each of the recurrence cases can be described as:

• 1a is a base case. If A[i, j] = 0, then it can’t be part of a square of 1’s and hence
the maximum square size is 0.

1

ECE 374 B Homework 6 Fall 2023

• 1b is another base case. The values on the bottom row can have a square (whose
top-left is at a point on that row) or more than 1. So we set the values accordingly.
Same logic applies for the rightmost column.

• 1c is the recurrence. If A[i, j] = 1, then there is the possibility we can connect
it to the neighboring squares to form a new even larger square. We do this by
taking the minimum sized square from the neighbors to bottom/right since we
can only have 1’s inside the new square.

The output is the max of all the possible square in the array max(LSq(1..n, 1..n))

We know that each computation of LSq(1..n, 1..n) looks at the values to the bottom
and right so we can memoize the array in reverse row-major order going from bottom
to top, right to left. The pseudo-code looks-like:

LSq(A[1 .. n, 1 .. n]):
LSq = zeros(n,n)
for i← 1 to n

LSq[n, i]← A[n, i]
LSq[i, n]← A[i, n]

for i← n− 1 down to 1
for j← n− 1 down to 1

if A[i, j] ̸= 0
LSq[i, j]←min {LSq[i + 1, j], LSq[i, j + 1], LSq[i + 1, j + 1]}

else
LSq[i, j]← 0

return max(LSq)

■

2

ECE 374 B Homework 6 Fall 2023

2. Suppose you are given an array A[1 .. n] of arbitrary real numbers. Recall a subarray of an
array A is by definition a contiguous subsequence of A. Define the sum and product of an
empty array to be 0 and 1, respectively. For any array A[i .. j] where i ≤ j, define its sum
and product to be

j
∑

k=i

A[k] and
j
∏

k=i

A[k],

respectively. For the sake of analysis, assume that comparing, adding and multiplying any
pair of numbers takes O(1) time.

(a) Describe and analyze an algorithm to compute the maximum sum of any subarray of
A.

Solution: This problem is a very widely used computer science technical interview
question and the algorithm described below, which is the fastest known algorithm
for this problem, is called Kadane’s algorithm. See https://en.wikipedia.org/
wiki/Maximum_subarray_problem#Kadane’s_algorithm for more details.

Let MaxSum(i) denote the maximum sum of any subarray of A that begins
with A[i]. MaxSum(i) satisfies the following recurrence:

MaxSum(i) =

¨

0 if i > n

max {0, A[i] +MaxSum(i + 1)} otherwise

We need to compute max
1≤i≤n

MaxSum(i). We can memoize this function in an array

MaxSum[1 .. n], where MaxSum[i] is assumed to memoize MaxSum(i). Because
the subproblem at index i depends only on the subproblem at index i + 1, if
the subproblems are evaluated in the order right to left, each subproblem will
have its dependencies computed by the time the algorithm reaches it. Because
each subproblem takes time O(1) to evaluate and there are O(n) subproblems, it
takes time O(n) to compute MaxSum(i) for all 1≤ i ≤ n. Since the maximization
max
1≤i≤n

MaxSum(i) takes time O(n) to compute thereafter, the algorithm runs in

time O(n) overall. The pseudocode for this algorithm is given below:

MaxSum(A[1 .. n]):
MaxSum[n+ 1]← 0 〈〈Base case〉〉
max←MaxSum[n+ 1]
for i← n down to 1:

MaxSum[i]←max {0, A[i] +MaxSum[i + 1]}
max←max {max,MaxSum[i]}

return max

■

3

https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane's_algorithm
https://en.wikipedia.org/wiki/Maximum_subarray_problem#Kadane's_algorithm

ECE 374 B Homework 6 Fall 2023

(b) Describe and analyze an algorithm to compute the maximum product of any subarray
of A[1 .. n].

Solution: We follow a similar approach as in Kadane’s algorithm given above, but
we track the minimum product less than 0 of subarrays starting at any particular
index in addition to the maximum product. To this end, we define two functions:

• Let MaxProd+(i) denote the maximum product of any subarray of A that
begins with A[i].

• Let MaxProd−(i) denote the minimum product less than 0 of any subarray of
A that begins with A[i].

If we define c ·∞ =∞ and c′ ·∞ = −∞ for all c > 0 and c′ < 0, MaxProd+

and MaxProd− satisfy the following mutual recurrences:

MaxProd+(i) =











1 if i > n

max
�

1, A[i] ·MaxProd+(i + 1)
	

if i ≤ n and A[i]≥ 0

max
�

1, A[i] ·MaxProd−(i + 1)
	

otherwise

MaxProd−(i) =











∞ if i > n

A[i] ·MaxProd−(i + 1) if i ≤ n and A[i]≥ 0

A[i] ·MaxProd+(i + 1) otherwise

We need to compute max
1≤i≤n

MaxProd+(i). We can memoize this function in two

one-dimensional arrays MaxProd+[1 .. n + 1] and MaxProd−[1 .. n + 1], where
MaxProd±[i] is assumed to memoize MaxProd±(i). Each entry MaxProd±[i]
depends only on entries in the next element of either the same array or the
other array, so we can fill both arrays in parallel scanning right to left. Since the
maximization max

1≤i≤n
MaxProd+(i) takes time O(n) to compute after computing

MaxProd+[1 .. n+ 1], the algorithm runs in time O(n) overall. The pseudocode
for this algorithm is given below:

MaxProd(A[1 .. n]):
MaxProd+[n+ 1]← 1 〈〈Base case〉〉
MaxProd−[n+ 1]←∞ 〈〈Base case〉〉
max←MaxProd+[n+ 1]
for i← n down to 1:

if A[i]≥ 0:
MaxProd+[i]←max

�

1, A[i] ·MaxProd+[i + 1]
	

MaxProd−[i]← A[i] ·MaxProd−[i + 1]
else: 〈〈A[i]< 0〉〉

MaxProd+[i]←max
�

1, A[i] ·MaxProd−[i + 1]
	

MaxProd−[i]← A[i] ·MaxProd+[i + 1]
max←max
�

max,MaxProd+[i]
	

return max

■

4

ECE 374 B Homework 6 Fall 2023

(c) Suppose you are also given an arbitrary integer X ≥ 0. Describe and analyze an
algorithm to compute the maximum sum of any subarray of A less than or equal to
X .

Solution: Let S(i) be the sum of A[1 .. i] for all 0≤ i ≤ n. S(i) can be computed
and memoized into an array S[1 .. n] in time O(n) via the following algorithm:

ComputeS(A[1 .. n]):
sum← 0
S[0]← sum
for i← 1 to n:

sum← sum+ A[i]
S[i]← sum

return S

Let S(i, j) be the sum of array A[i .. j] for all integers i and j. Then

S(i, j) =

¨

S(j)− S(i − 1) if 1≤ i ≤ j ≤ n

0 otherwise

for all such i and j. We can compute and memoize S(i, j) for all such i and j in
time O(n2) using S[1 .. n] memoized in the previous step. We then define S(i, j)
as follows for all integers i and j:

S(i, j) =

¨

S(i, j) if 1≤ i ≤ j ≤ n and S(i, j)≤ X

0 otherwise
.

S(i, j) takes time O(n2) to compute and memoize for all such i and j using S(i, j)
memoized in the previous step. If we define max∅= 0, the final answer is given
by

max
i, j

S(i, j).

Since this maximization takes time O(n2) to compute after computing and
memoizing S(i, j) for all such i and j, the overall algorithm runs in time O(n2).
It is given below in pseudocode:
MBS(A[1 .. n], X):

A[0]← 0
maxSum← 0 〈〈Initialize max sum seen thus far〉〉
outerSum← 0 〈〈Initialize sum of subarray A[1 .. j]〉〉
for j← 1 to n:

outerSum← outerSum+ A[j] 〈〈Compute sum of A[1 .. j]〉〉
innerSum← 0 〈〈Initialize sum of subarray A[1 .. i]〉〉
for i← 1 to j:

innerSum← innerSum+ A[i − 1] 〈〈Compute sum of A[1 .. i − 1]〉〉
subarraySum← outerSum− innerSum 〈〈Compute sum of A[i .. j]〉〉
if subarraySum≤ X : 〈〈If sum of A[i .. j]≤ X 〉〉

maxSum←max {maxSum, subarraySum}
〈〈Update max sum seen thus far〉〉

return maxSum
■

5

ECE 374 B Homework 6 Fall 2023

Solution: Let S(i) be defined as above for all 0 ≤ i ≤ n. We optimize the
above algorithm by using the following observations. Fix an integer j, define
S j(i) = S(i, j) for all integers i and fix i∗ ∈ arg max

i
S j(i). Observe that

S(i∗) = min
0≤i≤ j

{S(i) | S(i)≥ S(j)− X } .

Thus, if we define

S(j) = min
0≤i≤ j

{S(i) | S(i)≥ S(j)− X }

for all 1≤ j ≤ n, the maximum sum of a subarray of A at most X that ends with
A[j] is

S(j) = S(j)− S(j).
Thus, the maximum sum of a subarray of A at most X is given by

max
1≤ j≤n

S(j).

It follows that if we use a data structure that enables the insertion of values
into the data structure as well as the computation of a minimum value in the
data structure above a given threshold in time O(log n), we can achieve time
O(n log n) overall by simply computing S(i) (and also S(i)) in time O(log n) for
each 1 ≤ i ≤ n. A binary search tree does the trick. We make the following
assumptions on the operations of the binary search tree:

• BinarySearch(k) returns the smallest key at least k in any vertex of the
binary search tree in time O(log n) and

• Insert(k) inserts a vertex into the tree with key k in time O(log n).

With these binary search tree operations, we can compute the maximum sum of a
subarray of A at most X via the following algorithm:

MBS′(A[1 .. n], X):
maxSum← 0 〈〈Initialize max sum seen thus far〉〉
cumSum← 0 〈〈Initialize cumulative sum S(j) to 0〉〉
Insert(cumSum) 〈〈Insert vertex with key S(j) into BST〉〉
for j← 1 to n:

cumSum← cumSum+ A[j] 〈〈Compute S(j)〉〉
minAtLeast← BinarySearch(cumSum− X) 〈〈Compute S(j)〉〉
currSum← cumSum−minAtLeast 〈〈Compute S(j)〉〉
maxSum←max {maxSum, currSum}〈〈Update max sum if it’s bigger〉〉
Insert(cumSum) 〈〈Insert vertex with key S(j) into BST〉〉

return maxSum

Since each iteration of the for loop in this algorithm requires time O(log n), this
algorithm runs in time O(n logn). ■

6

ECE 374 B Homework 6 Fall 2023

(d) Describe a faster algorithm for part (c) when every element in the array A is nonnega-
tive.

Solution: We can obtain a faster algorithm than in part (c) by observing the
following fact in the case that A contains only nonnegative elements.

Claim 1. Fix integers j and j′ such that 1 ≤ j < j′. Define S j(i) = S(i, j) and
S j′(i′) = S(i′, j′) for all integers i and i′. Fix i∗ ∈ arg max

i≤ j
S j(i). There exists

i∗ ≤ i′∗ ≤ n such that i′∗ ∈ argmax
i′

S j′(i′).

Proof: Suppose otherwise. Then there exists an index i′∗ < i∗ such that
max
i∗≤i′

S j′(i
′)<max

i′≤ j
S j′(i

′) = S j′(i
′∗).

Then
S j(i

∗) = S(i∗, j) = max
i∗≤i′≤ j′

S(i′, j) = max
i∗≤i′≤ j′

�

S(i′, j′)− S(j + 1, j′)
�

=
�

max
i∗≤i′≤ j′

S(i′, j′)
�

− S(j + 1, j′)<
�

max
i′≤ j′

S(i′, j′)
�

− S(j + 1, j′)

=
�

max
i′≤ j′

S j′(i
′)
�

− S(j + 1, j′) = S j′(i
′∗)− S(j + 1, j′)

= S(i′∗, j′)− S(j + 1, j′) = S(i′∗, j) = S j(i
′∗),

which contradicts the assumption that i∗ ∈ arg max
i≤ j

S j(i). □

The above claim implies that after computing an optimal i corresponding to
a particular j with respect to the maximization of S(i, j), it is unnecessary to
consider i′ < i as candidates for indices that maximize S(i′, j′) for all j′ > j
and can thus be skipped over. This optimization corresponds to the following
algorithm, which effectively maintains a sliding window A[i .. j] of elements
whose sum is at most X :

MBS′′(A[1 .. n], X):
i← 0 〈〈Initialize window left boundary〉〉
A[i]← 0 〈〈Add a sentinel value〉〉
currSum← 0 〈〈Initialize window sum〉〉
maxSum← 0 〈〈Initialize max sum seen thus far〉〉
for j← 1 to n: 〈〈Increment right boundary of window〉〉

currSum← currSum+ A[j] 〈〈Update window sum〉〉
while currSum> X : 〈〈While window sum is more than X 〉〉

currSum← currSum− A[i]
i← i+ 1 〈〈Increment left boundary and update window sum until not〉〉

maxSum←max {maxSum, currSum}〈〈Update max sum seen thus far〉〉
return maxSum

Because i and j each only index through O(n) values over all iterations of both
loops in the above algorithm, this algorithm runs in time O(n).

7

ECE 374 B Homework 6 Fall 2023

Solution: A recursive implementation of the above algorithm is given below. Add
sentinel valuesA[0] = 0 andA[n+1] =∞. LetMBS′′′(A[0 .. n+1], X , i, j, currSum)
denote the maximum sum at most X of a subarray of A[i .. n] where the sum of
A[i .. j] is currSum. It is given below in pseudocode:
MBS′′′ (A[0 .. n+ 1], X , i, j, X , currSum):

if i > n: 〈〈Subarray is empty; report that max sum is 0〉〉
return 0

else if currSum> X : 〈〈If curr window sum is more than X 〉〉
return MBS′′′ (A, i + 1, j, X , currSum− A[i])

〈〈Report max bdd sum of window A[i′ .. j′]
for i′ ≥ i and j′ > j〉〉

else: 〈〈If curr window sum is not more than X 〉〉
return max {currSum,MBS′′′ (A, i, j + 1, X , currSum+ A[j + 1])}

〈〈Report bigger of curr window sum and max bdd sum
of window A[i′ .. j′] for i′ ≥ i and j′ > j〉〉

The final answer is given by MBS′′′(A, X , 0, 0, 0). Its runtime for an array of n
elements satisfies the recurrence T (n) = T (n − 1) + O(1) which has solution
T (n) = O(n), so this algorithm also runs in time O(n). ■

8

ECE 374 B Homework 6 Fall 2023

3. We are given a tree T = (V, E) with n vertices. Assume that the degree of all the vertices
in T is at most 3. You are given a function f : V → {0,1, 2,3}. The task is to compute a
subset X of edges, such that for every node v ∈ V , there are at least f (v) distinct edges in
X that are adjacent to v.

Describe an algorithm, as fast as possible, that computes the minimum size set X ⊆ E
that meets the needs of all the nodes in the tree. The algorithm should output both |X |
and X itself.

Solution: We root the tree at an arbitrary vertex r that is either of degree two or one
(this takes O(n) time to do) – since every tree has a leaf, this is always possible. Now,
every vertex has pointers left(v), right(v), which are NULL if these children nodes do
not exist.

We use dynamic programming to solve this problem, where the recursive function
is defined as follows.

We use dynamic programming to solve this problem, where the recursive function
is defined as follows.

Cover(v, s) =











0 v = NULL
min{Cover(left(v),ℓ) + Cover(right(v), r) + s} if ∆≥ f (v) for all ℓ, r ∈ {0, 1}
∞ otherwise

where, ∆ = s + (ℓ× [left(v) ̸= NULL]) + (r ×[right(v) ̸= NULL])

A call to cover(v, s) returns the cheapest feasible solution that meets all the demands
in the subtree of v, where s ∈ {0,1} indicates whether or not the edge to the parent is
included in the solution (and needed to be paid for). We compute the minimum size
out of 4 combinations specified by the values of {ℓ, r} indicating wether or not edges
to the left and right children are included respectively, if they exist.

9

ECE 374 B Homework 6 Fall 2023

cover(v, s):
b← +∞, c← 〈0,0〉
for ℓ= 0,1 do

for r = 0,1 do
∆← s+ [left(v) ̸= NULL] · ℓ+ [right(v) ̸= NULL] · r
if ∆≥ f (v) then

pleft← 0, pright← 0
if left(v) ̸= NULL then

pleft← cover(left(v),ℓ)
if right(v) ̸= NULL then

pright← cover(right(v), r)
α← pleft + pright + s
if α < b then

b← α
c← 〈ℓ, r〉

sol[v, s]← c // For printing the solution later
return b

We memoize this function into an array cover[1 .. n, 0 .. 1]. There are 2n distinct
recursive calls, so memoization readily yields an O(n) time algorithm using a postorder,
reverse preorder or reverse level order traversal of the tree, since the recursive function
takes O(1) time ignoring the recursive calls. (Note that a level order traversal of a
tree is equivalent to a breadth-first search (BFS) of the tree.)

Printing the solution is easy. We first call cover(r, 0). Next, we call
printSolution(NULL, r, 0), where printSolution is defined as follows:

// p: Parent of current node v
printSolution(p, v, s):

if v = NULL then
return

if s = 1 then
print “Edge pv in optimal solution”

〈ℓ, r〉 ← sol[v, s]
if left(v) ̸= NULL then

printSolution(v, left(v),ℓ)
if right(v) ̸= NULL then

printSolution(v, right(v), r)

■

10

ECE 374 B Homework 6 Fall 2023

4. Plum blossom poles are a Kung Fu training technique, consisting of n large posts partially
sunk into the ground, with each pole pi at position (xi, yi). Students practice martial arts
techniques by stepping from the top of one pole to the top of another pole. In order to
keep balance, each step must be more than d meters but less than 2d meters. Give an
efficient algorithm to find a safe path from pole ps to pt if it exists.

Solution: We will have an input of list of n xy-coordinates, the value for minimum
distance d, source coordinate and destination coordinate. We will use this data to
build a graph by calculating the Euclidean distance between every pair of coordinates
and adding an undirected edge between pairs where the distance lies in the range of
d to 2d. This algorithm will take O(n2). We will use a BlackBox algorithm BFSPath
that takes a Graph, source and destination vertices and returns True if a path exists
between the two points and False if path does not exist. The runtime complexity of
running the BFS algorithm will be O(V + E) where V is the number of vertices and E
is the number of edges.

• Each vertex is (x i , yi) representing the xy coordinates of the Plum blossom poles

• An edge between 2 vertices indicates that the distance between the vertices is
between d and 2d. They are undirected.

• Since we are determining whether a path exists, we do not need to have a value
associated with the edge.

• The problem we are trying to solve is whether a path lies between two points
in the graph. Whether we can start at a given vertex and traverse through the
graph and reach the destination vertex.

• We can use a DFS or BFS algorithm to check whether a path exists between two
vertices.

BuildGraph(A[(x1, y1), (x2, y2), ...(xn, yn)], d):
Let g ← Empty Graph with n nodes
for i← 1 to n− 1

for j← i + 1 to n
dist = SquareRoot((x i − x j)2 + (yi − y j)2)
if d <= dist <= 2d

add an Undirected edge between node i and j

return g

PlumBlossomPath(A[(x1, y1), (x2, y2), ...(xn, yn)], d, src, dest):
graph = BuildGraph(A, d)
PathExists = BFSPath(graph, src, dest)
return PathExists

■

11

