
ECE 374 B Homework 7 Fall 2023

1. You are given a list D[n] of n words each of length k over an alphabet Σ in a language you
don’t know, although you are told that words are sorted in lexicographic order. Using D[n],
describe an algorithm to efficiently identify the order of the symbols in Σ. For example,
given the alphabet Σ = {Q, X , Z} and the list D = {QQZ ,QZ Z , XQZ , XQX , X X X }, your
algorithm should return QZX . You may assume D always contains enough information to
completely determine the order of the symbols. (Hint: use a graph structure, where each
node represents one letter.)

Solution: Consider two words, D[i], D[i + 1]. Consider j such that D[i][j] ̸=
D[i + 1][j] and ∀k < j, D[i][k] = D[i + 1][k]. That is, j is the index of the first
different letter between D[i] and D[i+1]. The comparison of D[i][j] and D[i+1][j]
reveals the order between the two letters. Any further comparison of D[i] and D[j]
would not help, since the following letters do not affect lexicographic order of D[i]
and D[i + 1]. Also, for arbitrary x , y, z such that x < y < z, if you are given the
comparisons of D[x], D[y] and D[y], D[z], then the comparison of D[x], D[z] does
not reveal any additional information about the order(Why? Let j, k be the first
different index between D[x], D[y] and D[y], D[z] respectively. Reason about three
cases: j < k, j = k, j > k). Therefore, the problem can be solved by constructing the
following directed graph.

• V = {v | v ∈ Σ}
• E = {(u, v) | u, v ∈ Σ, u ̸= v,∃i, j s.t. D[i][j] = u, D[i + 1][j] = v,

∀k < j, D[i][k] = D[i + 1][k]}

Note that for any edge (u, v) ∈ E, there is a corresponding pair of consecutive words
(D[i], D[i + 1]) such that if j is the index of the first different letter, then D[i][j] = u
and D[i + 1][j] = v. This means for any edge (u, v), we know for sure that u comes
before v in their language. Since there can be no cycle in the graph, it can be
topologically sorted to obtain the order of symbols. The running time of the algorithm
is O(nk), since in worst case we should iterate over every symbol in D to construct
the graph.

■

1

ECE 374 B Homework 7 Fall 2023

2. Given a directed-acyclic-graph (G = (V, E)) with integer (positive or negative) edge weights:

(a) Give an algorithm to find the shortest path from a node s to a node t.

Solution: Because there are negative edge weights we cannot use a greedy
method like Dijkstra’s algorithm; however because the graph is directed and
acyclic we can use a topological sort. Topologically sorting the graph means that
every vertex can only reach vertices below them in the sort and cannot reach
vertices above them in the sort.

This means after topologically sorting the graph we start at node s and
compute the shortest path from node s to each of the nodes below it in sequential
order. To do this we initialize the distance from s to all the other nodes as∞
then we update the distance from node s to be the weight of the edges from s to
the neighbors of s. Then we move on to the next sequential node say u, and look
at its neighbor, say v. If the distance from s to u plus the edge weight from u to
v is less than the current distance from s to v then we update the value. This
repeats until we reach node t.

Let s and t be the nth and mth node in the topological sort and let N(u) be
the neighbor set of u. Then the algorithm is

2

ECE 374 B Homework 7 Fall 2023

DAGSP(V, E, s, t):
(Vs, Es)← TopSor t(V, E)
n← index(s)
m← index(t)
D[n]← 0
for k← n+ 1 to m

D[k]←∞
for i← n to m− 1

for v in N(vi)
j← index(v)
D[j]←min{D[j], D[i] + Es[i][j]}

return D[m]

A topological sort takes O(V + E) time and the for loops in the algorithm
takes O(V + E). So the total running time is O(V + E). ■

(b) Give an algorithm to find the longest path from a node s to a node t.

Solution (Direct): To find the longest path from node s to node t we can do
the same process as part a) but instead we initialize the values to −∞ then take
the maximum value.

DAGLP(V, E, s, t):
(Vs, Es)← TopSor t(V, E)
n← index(s)
m← index(t)
D[n]← 0
for k← n+ 1 to m

D[k]←−∞
for i← n to m− 1

for v in N(vi)
j← index(v)
D[j]←max{D[j], D[i] + Es[i][j]}

return D[m]

This has a running time of O(V + E).
■

Solution (Reduction): This problem can be reduced to the part a). Multiplying
all of the edge weights by −1 then finding the shortest path then multiplying
that value by −1 yields the longest path.

DAGLP(V, E, s, t):
Et ←−1 ∗ E
x ← DAGSP(V, Et, s, t)

return −1 ∗ x

This has a running time of O(V + E).
■

3

ECE 374 B Homework 7 Fall 2023

3. Suppose you are given two dags G(VG , EG) and H(VH , EH) in which every node has a label
from some finite alphabet; different nodes may have the same label. The label of a path in
either dag is the string obtained by concatenating the labels of its vertices.

(a) Describe and analyze an algorithm to compute the length of a longest string that is
both the label of a path in G and the label of a path in H.

Solution: Let L(v) denote the label of v ∈ VG ∪ VH . We can reduce to a longest
path problem in an unweighted dag G′ = (V, E) as follows:

• V = (VG × VH)∪ {s}
• E = E1 ∪ E2 where

– E1 = {(u1, u2)→ (v1, v2) | (u1, v1) ∈ EG , (u2, v2) ∈ EH , L(v1) = L(v2)}
– E2 = {(s, (v1, v2)) | v1 ∈ VG , v2 ∈ VH , L(v1) = L(v2)}

• We need to compute the length of the longest path from s to any vertex in
G′. We can do this by dynamic programming using the algorithm in Jeff’s
lecture notes as G′ is a dag.

• Constructing the G′ by brute force and computing the length of the longest
path in G′ takes O(VGVH + EG EH) since we need to iterate through every
pairs of VG × VH and EG × EH . Overall, the algorithm requires time
O(VGVH + EGEH).

Claim 1. The length of the longest path in G′ is the length of the longest string
that is both the label of a path in G and the label of a path in H.

Proof: Let i be the length of the longest path in G′. Let j be the length of the
longest common string in the paths of G and H. For the sake of contradiction,
suppose i ̸= j.

• Suppose i < j. Then, there exists a path g1 g2...g j in G and a path h1h2...h j in
H such that L(gk) = L(hk) for every 1≤ k ≤ j. However, by the definition of
G′, s, (g1, h1), (g2, h2)...(g j , h j) is a path in G′ of length j, which contradicts
our assumption on the length of the longest path in G′. Therefore, we have
i ≥ j.

• Suppose i > j. Then, there exists a path s, (d1, f1), (d2, f2)...(di , fi) in G′.
However, by definition, d1d2...di is a path of length i in G and f1 f2... fi is
a path of length i in H such that L(dk) = L(fk) for every 1 ≤ k ≤ i, which
contradicts our assumption on the longest common string in the paths of G
and H. Therefore, we have i ≤ j.

We conclude that i = j, which means the length of the longest path in G′ is the
length of the longest string that is both the label of a path in G and the label of a
path in H. □

4

ECE 374 B Homework 7 Fall 2023

(b) Describe and analyze an algorithm to compute the length of the longest string that is
both a subsequence of the label of a path in G and a subsequence of the label of a
path in H.

Solution: We reduce to a longest path problem on a weighted dag G′ = (V, E) as
follows:

• V = (VG × VH)∪ {s, t}
• We add an edge (u1, u2)→ (v1, v2) between two vertices (u1, u2), (v1, v2) ∈

V \ {s, t} in the following three cases:
– (u1, v1) ∈ EG and u2 = v2. These edges have weight 0.
– u1 = v1 and (u2, v2) ∈ EH . These edges have weight 0.
– (u1, v1) ∈ EG , (u2, v2) ∈ EH and L(v1) = L(v2). These edges have weight

1.
Then, we add edges from s to every vertex in V \ {s, t} with weight 0, and
then from every vertex in V \ {s, t} to t with weight 0.

• We need to compute the length of the longest path from s to t in G′. We
can do this by dynamic programming using the algorithm in Jeff’s lecture
notes as G′ is a dag.

• We have that V = O(VGVH) and E = O(VG EH+VH EG+EG EH). Thus, the size
of the graph is O(VGVH + VG EH + VH EG + EG EH) = O ((VG + EG)(VH + EH)).
Thus, constructing G′ by brute force and computing the length of the longest
path in G′ requires time O ((VG + EG)(VH + EH)) as G′ is a dag. Overall, the
algorithm requires time O ((VG + EG)(VH + EH)).

Claim 2. The length of the longest path from s to t in G′ is the length of the
longest string that is both a subsequence of a path in G and a subsequence of
the label of a path in H.

Proof: Let i be the length of the longest path in G′. Let j be the length of the
longest common string in the paths of G and H. Let E1 ⊆ E denote the set of all
edges in E weighted as 1. For the sake of contradiction, suppose i ̸= j.

• Suppose i > j. Then, there exist a path p = sn1n2...nk t in G′ for some
k ≥ 0 that contains i > j edges from E1. Let us denote nl = (ul , vl) for
1 ≤ l ≤ k. By the definition of E1, there exists a set S of i indices such
that L(us) = L(vs) for any s ∈ S. However, by the definition of E, we can
obtain a path in G that contains every elements in the set {us|s ∈ S} by
concatenating u1, u2, ..., uk and removing the repeated vertices. Similarly,
we can obtain a path in H that contains every elements in the set {vs|s ∈ S}.
Since we have L(us) = L(vs) for every s ∈ S and |S| = i > j, the length of
the longest common subsequence of the labels of the paths in G and H is at
least i, which is a contradiction.

• Suppose i < j. Then, there exists a path pG = g1 g2...gn for some n in
G and a path pH = h1h2...hm for some m in H such that pG and pH has
w= w1w2...w j as the longest common subsequence of the labels. Then, we
can construct a path with length j in G′ by the following method:
– Initially take the edge (s, (g1, h1))

5

ECE 374 B Homework 7 Fall 2023

– If for the current vertex gq, hr , both gq and hr are parts of w(that is,
if L(gq) = L(hr) and those were indeed used as a pair to get w), then
take the edge ((gq, hr), (gq+1, hr+1)).

– If gq is a part of w but hr is not, then take the edge ((gq, hr), (gq, hr+1))
– If only hr is a part of w, then take the edge ((gq, hr), (gq+1, hr))
– If both gq and hr are not a part of w, take either ((gq, hr), (gq, hr+1)) or
((gq, hr), (gq+1, hr)).

The length of the path increments when taking the edge ((gq, hr), (gq+1, hr+1)).
Since we can obtain a path of G′ with length greater than i, we have a
contradiction.

Therefore, we conclude that i = j. □

(c) Describe and analyze an algorithm to compute the length of the shortest string that is
both a supersequence of the label of a path in G and a supersequence of the label of a
path in H.

Solution: The following is an algorithm to do this:

SCS(G(VG , EG), H(VH , EH)):
for i← 1 to VG + VH :

seenLabels[i]← False
for v in VG:

seenLabels[L(v)]← True
for v′ in VH :

if seenLabels[L(v′)]← True:
return 1

return 2

The correctness of this algorithm follows from the following observations. If
there exists a vertex v in G and a vertex v′ from H such that L(v) = L(v′), then
L(v) is the shortest string that is a supersequence of the label of the path v in
G and the label of the path v′ in H. If there is no such pair of vertices, the
string must contain at least two symbols to be a supersequence of both the
label of a path in G and the label of a path in H. This algorithm requires time
O(VG + VH). ■

6

ECE 374 B Homework 7 Fall 2023

4. (a) Define the width of a walk in a graph to be the maximum weight of any vertex in the
walk. Let G(V, E) be an undirected graph with weighted edges, w(v) be the weight of
each vertex v, s be a starting vertex, t be a target vertex and L be a maximum length.
Describe and analyze an algorithm that returns the maximum width of any walk from
s to t in G whose total length is at most L. You may assume G has no negative cycles
but not that it has no edges of negative weight.

Solution: Let GR = (V, ER) where u → v ∈ E ⇐⇒ v → u ∈ ER. Fix v ∈ V .
Notice that a shortest t-v path in GR is a v-t shortest path in G. Thus, Bellman-
Ford from t in GR suffices to compute the shortest-path distances from every
vertex to t in G as GR has no negative weight cycles. This implies the following
algorithm solves the problem:

MaxWidth(G(V, E), s, t, L):
construct GR(V, ER) from G
d(s, ·)← Bellman-Ford(G , s)
d(·, t)← Bellman-Ford(GR, t)
maxWidth←−∞
for v in V :

if d(s, v) + d(v, t)≤ L:
maxWidth←max {maxWidth, w(v)}

return maxWidth

Constructing GR(V, ER) by brute force takes time O(V + E). Thus, the runtime of
this algorithm is dominated by the application of the Bellman-Ford algorithm on
G and GR which requires time O(VE). ■

(b) Let G(V, E) be a directed graph with nonnegative edge weights, let s and t be vertices
of G and let H(V, E′) be a subgraph of G where E′ ̸= E. Suppose we want to reinsert
exactly one edge from G back into H, so that the shortest path from s to t in the
resulting graph is as short as possible. Describe and analyze an algorithm that chooses
the best edge to reinsert.

Solution: Let HR = (V, ER) where u→ v ∈ E′ ⇐⇒ v→ u ∈ ER. As G (and thus
H) has nonnegative weight edges, this algorithm solves the problem:

OneMoreEdge(G(V, E), H(V, E′), s, t):
construct HR(V, ER) from H
d(s, ·)← Dijkstra(H , s)
d(·, t)← Dijkstra(HR, t)
minDist← d(s, t)
bestEdge← None
for u→ v to E \ E′:

if minDist> d(s, u) + ℓ(u→ v) + d(v, t):
minDist← d(s, u) + ℓ(u→ v) + d(v, t)
bestEdge← u→ v

return bestEdge

Constructing HR(V, ER) by brute force takes time O(V + E). Thus, the runtime
of this algorithm is dominated by the application of Dijkstra’s algorithm on H
and HR which requires time O(E + V log V). ■

7

