
ECE 374 B Homework 8 Fall 2023

1. The traveling salesman problem can be defined in two ways:

• The Traveling Salesman Problem
– Input: A weighted graph G
– Output: Which tour (v1, v2, . . . , vn) minimizes

∑n−1
i=1 (d[vi , vi + 1]) + d[vn, v1]

• The Traveling Salesman Decision Problem
– Input: A weighted graph G and an integer k
– Output: Does there exist and TSP tour with cost ≤ k

Suppose we are given an algorithm that can solve the traveling salesman decision problem
in (say) linear time. Give an efficient algorithm to find the actual TSP tour by making a
polynomial number of calls to this subroutine.

Solution: We will first find the minimal cost of a TSP tour, and then find the minimal
TSP tour using the minimal cost. We let TSPD(G, k) denote the result of running the
given algorithm for traveling salesman decision problem on the input (G, k).

Finding the minimal cost : Let dmin and dmax denote the minimal and maximal
weight of the edges in E, respectively. Since a TSP tour would contain |V | edges,
we can infer that the cost of any TSP tour would be lower-bounded by |V |dmin and
upper-bounded by |V |dmax . Therefore, we can run binary search on the integers
ranging from |V |dmin to |V |dmax to find the integer value k such that TSPD(G, k) is
True and TSPD(G, k− 1) is False. The integer k would be the minimal cost of a TSP
tour.

Finding the minimal TSP tour : Let k be the minimal cost of a TSP tour in G.
Let e be an arbitrary edge of G and let G′ be a graph obtained by removing e from G.
Suppose e was not included in a minimal TSP tour T of G(note that minimal TSP tour
is not necessarily unique). Then TSPD(G′, k) would return True, since the minimal
TSP tour T still remains in G′. Now suppose e was included in every minimal TSP
tour of G. Then TSPD(G′, k) would return False, since without e we cannot formulate
a minimal TSP tour with the cost k. Therefore, for each e ∈ E, we will remove e from
G and run TSPD(G, k). If TSPD(G, k) returns True, that means there exists a minimal
TSP in G that does not contain e, so we will leave e removed. If TSPD(G, k) returns
False, that means e is definitely a part of any minimal TSP in G, so we will add e back
into G. Once we have all unnecessary edges removed, we can run a linear time search
algorithm from any node to construct the tour. The following is the pseudocode of the
algorithm.

TSP(G(V, E)):
lower ← |V | ∗ dmin
upper ← |V | ∗ dmax
k← BinSearch(lower, upper)
for e in E:

remove e from G
if TSPD(G, k)=False:

add e to G
s← ArbitraryNode(G)
tour ← DFS(s)

return tour

1

ECE 374 B Homework 8 Fall 2023

BinSearch(lower, upper)):
if upper − lower < 1000

find k via brute force
else

mid ← (lower+upper)
2

if TSPD(G, mid) is true
k← BinSearch(lower,mid)

else
k← BinSearch(mid+1,upper)

return k

The complexity of the binary search is dependent on the difference between
the upper and lower bound of the total cost. That is, if we let c = dmax − dmin,
the complexity of the binary search is O(log(c|V |)). However, note that c = O(2n)
where n is the length(number of bits) of the input, since with n bits you can
only represent integers upto 2n. Therefore, the complexity of the binary search
is O(log(c|V |)) = O(log c) + O(log |V |) = O(n), which is linear in the input size.
The rest of the algorithm loops over every edge, and TSPD is assumed to be linear
(O(V +E)), so the runtime of the tour construction is O(E(E+V)). Therefore, the total
runtime would be O(n+ E(E+V)) which is polynomial in input size. For grading, the
reasoning for the complexity of binary search is not required; providing O(E(E + V))
and reasoning about the tour construction is sufficient for full marks.

■

2

ECE 374 B Homework 8 Fall 2023

2. For any integer k, the problem kSat is defined as follows:

• Input: A boolean formula Φ in conjunctive normal form, with exactly k distinct
literals in each clause.

• Output: True if Φ has a satisfying assignment, and False otherwise.

(a) Describe and analyze a polynomial-time reduction from 2Sat to 3Sat, and prove your
reduction is correct.

Solution: One such reduction (of infinitely many possible ones) is as follows. Let

Φ=
n
∧

i=1

ℓi,1 ∨ ℓi,2

be the instance to 2Sat; in the above description of Φ, ℓi,1 and ℓi,2 are literals for
all 1≤ i ≤ n, not variables. Construct 3CNF formula

Φ′ =
n
∧

i=1

(ℓi,1 ∨ ℓi,2 ∨ x)∧ (ℓi,1 ∨ ℓi,2 ∨ x);

here, x is a variable not in Φ. Input Φ′ into the black box algorithmA for 3Sat,
and feed the output ofA as the output of the constructed algorithm for 2Sat. Φ′

has exactly twice the number of clauses as Φ and there are at most 2n variables.
Thus, Φ′ can be constructed by brute force in time O(n) by a scanning through
once Φ. The reduction is linear-time and thus polynomial-time.

We now prove the correctness of this reduction by proving the following claim:
Φ has a satisfying assignment ⇐⇒ Φ′ has a satisfying assignment.

⇒ Suppose there is an assignment A of the variables in Φ that makes Φ evaluate
to True. Fix 1≤ i ≤ n. By the definition of∧, we have that ℓi,1∨ℓi,2 evaluates
to True under A. By the definition of ∨, this gives either ℓi,1 = True or
ℓi,2 = True under A. Define the assignment A′ as one that coincides with
A for variables in Φ and assigns any truth value to x . By the definition of
∨, both ℓi,1 ∨ ℓi,2 ∨ x and ℓi,1 ∨ ℓi,2 ∨ x evaluate to True under A′. Since
this analysis holds for all 1 ≤ i ≤ n, by the definition of ∧, we have that
∧n

i=1(ℓi,1 ∨ ℓi,2 ∨ x) ∧ (ℓi,1 ∨ ℓi,2 ∨ x) evaluates to True under A′. But
∧n

i=1(ℓi,1 ∨ ℓi,2 ∨ x)∧ (ℓi,1 ∨ ℓi,2 ∨ x) = Φ′, which implies Φ′ has a satisfying
assignment.

⇐ Suppose there is an assignment A′ of the variables inΦ′ that makesΦ′ evaluate
to True. Fix 1≤ i ≤ n. By the definition of ∧, (ℓi,1∨ℓi,2∨ x)∧ (ℓi,1∨ℓi,2∨ x)
evaluates to True under A′. By the definition of ∧ again, ℓi,1 ∨ ℓi,2 ∨ x and
ℓi,1 ∨ ℓi,2 ∨ x both evaluate to True under A′. It can easily be seen that both
x and x cannot be True under A′. Assume that x is True under A′ without
loss of generality. Then x evaluates to False, which implies that either ℓi,1
or ℓi,2 must evaluate to True. We prove this by contradiction. Suppose
both ℓi,1 and ℓi,2 evaluate to False. Then ℓi,1 ∨ ℓi,2 ∨ x evaluates to False, a
contradiction. By the definition of ∨, then ℓi,1 ∨ ℓi,2 evaluates to True under
A′ (and the restriction of the assignment A of A′ to variables in Φ). Since
this analysis holds for all 1 ≤ i ≤ n, by the definition of ∧, we have that

3

ECE 374 B Homework 8 Fall 2023

∧n
i=1 ℓi,1 ∨ ℓi,2 evaluates to True under A. But

∧n
i=1 ℓi,1 ∨ ℓi,2 = Φ, which

implies Φ has a satisfying assignment.

■

(b) Describe and analyze a polynomial-time algorithm for 2Sat. [Hint: This problem is
strongly connected to topics earlier in the semester.]

Solution: Let

Φ=
n
∧

i=1

ℓi,1 ∨ ℓi,2

be the instance to 2Sat; in the above description of Φ, ℓi,1 and ℓi,2 are literals for
all 1≤ i ≤ n, not variables. Construct a directed graph G = (V, E) as follows:

• x is a variable in Φ ⇐⇒ x , x ∈ V
• ℓ1 ∨ ℓ2 is a clause for some literals ℓ1 and ℓ2 in Φ ⇐⇒ ℓ1→ ℓ2,ℓ2→ ℓ1 ∈ E

Compute the strong components of G using Kosaraju’s algorithm and check if,
for any variable x , x and x are in the same strong component. If so, return
False. Otherwise, return True. Kosaraju’s algorithm and checking the above
condition combined require time O(V + E) in terms of the graph G. Since V ≤ 2n
and E ≤ 2n where n is the number of clauses in Φ, in terms of the original input
Φ, this algorithm requires time O(n). This verifies that the algorithm is indeed
polynomial-time. ■

(c) Why don’t these results imply a polynomial-time algorithm for 3Sat?

Solution: We do not have enough information. It’s worth noting that either
of the following changes to the prompts of parts (a) and (b) would imply a
polynomial-time algorithm for 3Sat:

• Part (a) asks for polynomial-time reduction from 3Sat to 2Sat instead of from
2Sat to 3Sat.

• Part (b) asks for a polynomial-time algorithm for 3Sat instead of 2Sat.

Also, just because you can use a harder problem (in this case 3Sat) to solve an
easier one (in this case 2Sat) doesn’t mean that is the only way to solve 2Sat (as
you can see in part (b)). This is a subtle but very important distinction that is at
the core of reductions. ■

4

ECE 374 B Homework 8 Fall 2023

3. A disjunctive normal form (DNF) formula is the converse of CNF; i.e., it is an ∨ of a number
of clauses where each clause is an ∧ of some terms. E.g: (x∧ y∧z)∨(z∧ y∧¬w)∨(x∧¬z).
DNF-SAT is the analog problem of (CNF-)SAT: given a DNF formula f , determine if there is
a satisfying assignment of the corresponding variables that renders the formula true.

(a) Design and analyze an efficient algorithm for DNF-SAT. Hint: DNF-SAT can be solved
directly, a reduction is not needed.

Solution: A DNF formula f is an ∨ of a number of clauses. How to determine if
f can be evaluated to true? If one of the clauses can be evaluated to true, then f
can be evaluated to true (f is satisfiable).

For DNF, a clause is an ∧ of some terms. How to determine if a clause can be
evaluated to true? A clause cannot be evaluated to true if it contains both a term
x and its complement ¬x .

The algorithm goes as follows:

• Initalize list of variable with blank spaces that will denote their truth assign-
ment.

• for each clause in the DNF formula:
– mark the variable according to the literals in the clause.
– if a variable is already marked in a way that does not correspond to the

literal, then return false
• return true

This algorithm takes O(| f |) time to run because it checks the membership of
¬term for every term in f . ■

(b) Demonstrate a reduction from 3SAT to DNF-SAT and analyze its runtime. (Hint: use
the distributive law.) (Another hint: this reduction will not be efficient, it will not be a
polynomial-time reduction).

Solution: Both 3SAT and DNF-SAT want to check satisfiability. If we can convert
an arbitrary 3CNF formula f into an equivalent DNF formula, then we can use
the algorithm for DNF-SAT to solve 3SAT.

An 3CNF formula f is an ∧ of a number of clauses where each clause is an ∨
of three terms. Consider an example with two clauses: (x ∨ y∨z)∧(¬x ∨ y∨¬z).
Using the distributive law, we can convert the 3CNF into an equivalent DNF with
nine clauses where each clause has two terms in it: (x ∧ ¬x) ∨ (x ∧ y) ∨ (x ∧
¬z)∨ (y ∧¬x)∨ (y ∧ y)∨ (y ∧¬z)∨ (z ∧¬x)∨ (z ∧ y)∨ (z ∧¬z).

In general, for a 3CNF formula f with n clauses, we can use the distributive
law to find an equivalent DNF with 3n clauses where each clause has n terms in
it. Therefore, the reduction from 3SAT to DNF-SAT takes O(n3n) time to run. ■

5

ECE 374 B Homework 8 Fall 2023

4. A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once. A
Hamiltonian path in a graph is a path that visits every vertex exactly once, but it need not
be a cycle (the last vertex in the path may not be adjacent to the first vertex in the path.)

Consider the following three problems:

• Directed Hamiltonian Cycle problem: checks whether a Hamiltonian cycle exists in a
directed graph,

• Undirected Hamiltonian Cycle problem: checks whether a Hamiltonian cycle exists in
an undirected graph.

• Undirected Hamiltonian Path problem: checks whether a Hamiltonian path exists in
an undirected graph.

(a) Give a polynomial time reduction from the directed Hamiltonian cycle problem to the
undirected Hamiltonian cycle problem.

Solution: For any arbitrary directed graph Gd := {Vd , Ed}, construct the following
undirected graph Gu := {Vu, Eu}:
• Vu := { vin, vmid , vout | v ∈ Vd}. For each of the vertices in the directed graph,

we split them into a triplet of in, mid, and out.
• Eu := {(uout , vin)| (u, v) ∈ Ed}∪{(vin, vmid) , (vmid , vout)| v ∈ Vd}. For each of

the triplets that comes from the same vertex, we connect them in the order
of in-mid-out. The directed edges in the Vd become the undirected ones
that connect out and in between corresponding triplets.

Notice that |Vu|= 3 |Vd | and |Eu|= |Ed |+ 2 |Vd |, so this reduction is linear.

⇒: Suppose that in Gd there exists a Hamiltonian cycle Cd :=
�

c1, c2, . . . , c|Vd |
�

,
where ci ∈ Vd . Then in Gu there should also exist

Cu :=
�

c1 in, c1mid , c1out , c2 in, c2mid , c2out , . . . , c|Vd | in, c|Vd |mid , c|Vd |out

�

,

which is a Hamiltonian cycle in Gu.

⇐: Suppose that in Gu there exists a Hamiltonian cycle C ′u. By definition,
within each of the triplets there should only be a path of order in-mid-out, and
between two triplets there should only be an edge of out-in. Thus, C ′u should
always be of the following form

C ′u :=
�

c′1 in, c′1mid , c′1out , c′2 in, c′2mid , c′2out , . . . , c′|Vd | in
, c′|Vd |mid

, c′|Vd |out

�

,

which corresponds to a Hamiltonian cycle C ′d :=
�

c′1, c′2, . . . , c′|Vd |

�

in Gd .
■

6

ECE 374 B Homework 8 Fall 2023

(b) Give a polynomial time reduction from the undirected Hamiltonian Cycle to directed
Hamiltonian cycle.

Solution: This reduction is simpler than the previous one. Given an instance
G of undirected Hamiltonian cycle, Let G′ be the directed graph with the same
vertices as G and containing edges u→ v and v→ u for every edge uv ∈ G.
(⇒) If C is a cycle in G, then C is also a cycle in the directed graph G′. For

every u→ v ∈ G′, the edge uv is in G.
(⇐) If C is a cycle in G′, then C is also a cycle in the original graph G. For

every uv ∈ G, the edge u→ v ∈ G′ by the construction.
■

(c) Give a polynomial-time reduction from undirected Hamiltonian Path to undirected
Hamiltonian Cycle.

Solution: Let the input to this problem be an undirected graph G. The goal is to
produce G′ such that G has a Hamiltonian path if G′ has a Hamiltonian cycle.

This can be done by adding a vertex v with edges to every vertex in the original
graph G, this will be G′.
⇒: If there exists a Hamiltonian path P in G, starting with vertex s and ending

with vertex t. Then [v, s, P, t, v] is a Hamiltonian cycle in G′.
⇐: In the other case, if C is the Hamiltonian cycle in G′, then removing v

from C will return a Hamiltonian path in G. ■

7

