
ECE 374 B Homework 9 Fall 2023

1. A strongly independent set is a subset of vertices S in a graph G such that for any two
vertices in S, there is no path of length two in G. Prove that Strongly Independent Set is
NP-hard.

Solution: To show that strongly independent set is NP-hard we do a reduction from
independent set.

For any graph G we construct a new graph H where we add vertices that correspond
to each edge, these edge vertices are connected to the vertices that the original edges
were connected to and to any edge vertex where the original edges shared a vertex.

→ Let G have an independent set X , then X is a strongly independent set in H.
If u, v in G are 2 length away, then the path in H is u connects to the edge vertex of
u, which connects to the edge vertex of v which connects to v, so u, v are 3 length
away in H. Therefore if G has an independent set of size k, then H has a strongly
independent set of size k.
← Let H have a strongly independent set Y . Then let w be an edge vertex in Y

where the original edge in G connects to vertices a, b. The path from any vertex z
(not a) to w is less than or equal to the path from z to a (or b). This is because a
connects only to the edge vertices that represent the edges a connects to in G, but
these edge vertices that connect to a are all connected to one another. So any path to
a has to go through one of these edge vertices. If this edge vertex is w then the path
to w is 1 shorter then the path to a. If this edge vertex is not w then this path could
go to w instead of a next so the path to w is the same as the path to a. This mean for
every edge vertex in Y we can swap it out for a vertex that the edge connected to in G
and preserve strong independence. Let Y ′ be the strongly independent set obtained
from swapping out all of the edge vertices. Y ′ is an independent set in G because
if all of the paths from u to v in Y ′ are greater than 2 in H then u and v cannot be
adjacent in G. Therefore if H has a strongly independent set of size k, then G has an
independent set of size k.

We have proved both directions in the reduction and constructing the new graph is
polynomial time. Therefore because independent set is NP-hard, strongly independent
set must also be NP-hard.

■

1

ECE 374 B Homework 9 Fall 2023

2. The problem kPartition is defined as follows: Given a set S of kn positive integers,
determine whether the elements of S can be split into n subsets, each with k elements,
whose sums are all equal.

(a) Describe and analyze a polynomial-time algorithm for 2Partition, or prove that it is
NP-hard.

Solution: We give a polynomial-time algorithm for 2Partition. To define the
main algorithm, we first define a recursive helper function as follows:

2PartitionRecursive(A[1 .. 2n]):
If n= 1

return True
return A[1] + A[2n] = A[2] + A[2n− 1]∧ 2Partition(A[2 .. 2n− 1])

With this definition of the recursive helper function, the top level call is:
2Partition(S):

A[1 .. 2n]←MergeSort(S)
return 2PartitionRecursive(A)

Observe that the running time of 2PartitionRecursive(A[1 .. 2n]) satisfies the
recurrence T (n) = T (n − 1) + O(1) which has solution T (n) = O(n). Since
MergeSort(S) requires time O(n log n), the algorithm requires time O(n logn),
implying it is polynomial-time. ■

2

ECE 374 B Homework 9 Fall 2023

(b) Describe and analyze a polynomial-time algorithm for 12Partition, or prove that it is
NP-hard.

Solution (direct): We prove that 12Partition is NP-hard via a reduction from
3Partition. Let S be the instance to 3Partition and m = max S. For ease
of notation, define [n] = {1, 2, . . . , n} for any positive integer n. Define T =
�

5m3 j + 4m2 + 4ms
�

� s ∈ S, j ∈ [3]
	

and S′ = S ⊎ T . We claim that there exists a
3-partition of S if and only if there exists a 12-partition of S′.
⇒ Suppose there is a 3-partition (Pi)ni=1 of S. For each i ∈ [n], let Pi =
�

pi, j | j ∈ [3]
	

. For all i ∈ [n], define Ti =
�

5m3 j + 4m2 + 4mpi, j

�

� j ∈ [3]
	

,
P ′i = Pi ⊎ Ti and s′i as the sum of the elements in P ′i . We have that, for
i, i′ ∈ [n] with i ̸= i′,

s′i =
3
∑

j=1

pi, j + 5m3 j + 4m2 + 4mpi, j

= 30m3 + 12m2 + (4m+ 1)
k
∑

j=1

pi, j

= 30m3 + 12m2 + (4m+ 1)
k
∑

j=1

pi′, j

=
3
∑

j=1

pi, j + 5m3 j + 4m2 + 4mpi′, j

= s′i′ .

For i, i′ ∈ [n] with i ̸= i′,
P ′i ∩ P ′i′ = (Pi ⊎ Ti)∩ (Pi′ ⊎ Ti′)

= (Pi ∩ Pi′)∪
�

Ti ∩ Ti′
�

=∅;

We show that the last step holds carefully, in particular that Ti ∩ Ti′ =∅. Fix
any i, i′ ∈ [n] and j, j′ ∈ [3] such that pi, j < pi′, j′ . If j = j′, then

5m3 j + 4m2 + 4mpi, j = 5m3 j′ + 4m2 + 4mpi, j < 5m3 j′ + 4m2 + 4mpi′, j′ .

If j ̸= j′, let j =min{ j, j′} and j =max{ j, j′}, and let i, i, i′ and i′ be defined
such that pi, j = pi, j and pi′, j′ = pi, j . Since j + 1≤ j,

5m3 j + 4m2 + 4mpi, j ≤ 5m3 j + 4m2 + 4m2

< 5m3 j + 5m3 + 4m2

= 5m3(j + 1) + 4m2

≤ 5m3 j + 4m2

< 5m3 j + 4m2 + 4mp j, j .

3

ECE 374 B Homework 9 Fall 2023

This shows that Ti ∩ Ti′ =∅ for all i, i′ ∈ [n] such that i ̸= i′. Since
S′ = S ∪ T

=

� n
⋃

i=1

Pi

�

∪
�

(2k)2m2 + 2kms
�

� s ∈ S, j ∈ [k]
	

=

� n
⋃

i=1

Pi

�

∪
� n
⋃

i=1

�

(2k)2m2 + 2kmpi, j

�

� j ∈ [k]
	

�

=
n
⋃

i=1

Pi ∪
�

(2k)2m2 + 2kmpi, j

�

� j ∈ [k]
	

=
n
⋃

i=1

P ′i ,

we have that (P ′i)ni=1 is a 2k-partition of S′.
⇐ Suppose there is a 2k-partition (P ′i)ni=1 of S′. For all i ∈ [n], define Pi = P ′i ∩S.

For all i ∈ [n], |Pi|= 3. Suppose otherwise. Then there exists i, i′ ∈ [n] with
i ̸= i′ such that |Pi|> 3 and |Pi′ |< 3. For all i ∈ [n], let si and si′ be the sum
of Pi and P ′i , respectively. We have that

s′i ≤ 12m+
3
∑

j=1

8
�

5m3 j + 4m2 + 4m2
�

< 12m+ 241m3

< 300m3

<

3
∑

j=1

10(5m3 j + 4m2 + 4m)

≤ s′i′ ,

a contradiction that (P ′i)ni=1 is a 2k-partition of S′. For i, i′ ∈ [n], we have that
si = si′ . Suppose otherwise. Then for some i, i′ ∈ [n], we have that si < si′ .
But this contradicts that s′i = s′i′ , as si′− si ≤ 3m but for any x , x ′ ∈ S′ \S with
x < x ′, x ′ − x ≥ 4m > 3m. Since for any i, i′ ∈ [n] with i ̸= i′ P ′i ∩ P ′i′ = ∅,
we have that Pi ∩ Pi′ =∅. Because also

S = S′ ∩ S =

� n
⋃

i=1

P ′i

�

∩ S =
n
⋃

i=1

P ′i ∩ S =
n
⋃

i=1

Pi ,

we have that (Pi)ni=1 is a k-partition of S.
Assuming there are n elements in S, it requires time O(n) to compute m and time
O(n) to compute 5m3 j + 4m2 + 4ms for all s ∈ S and j ∈ [3] thereafter. Thus the
reduction requires time O(n), implying it is polynomial-time. ■

4

ECE 374 B Homework 9 Fall 2023

Solution (induction): We prove that 12Partition is NP-hard via an alternate
strategy. In particular, we show that kPartition ≤p 2kPartition for all k ≥ 3.
As 3Partition is NP-hard, this proves inductively a stronger claim than the one
we require: 3 · 2iPartition is NP-hard for all integers i ≥ 0.

Let S be the instance to kPartition, m=max S, T =
�

(2k)2m2 + 2kms
�

� s ∈ S
	

and S′ = S ⊎ T. We claim that, for any k ≥ 3, there exists a k-partition of S if and
only if there exists a 2k-partition of S′.
⇒ Suppose there is a k-partition (Pi)ni=1 of S. For each i ∈ [n], let Pi =
�

pi, j | j ∈ [3]
	

. Define Ti =
�

(2k)2m2 + 2kmpi

�

� pi ∈ Pi

	

and P ′i = Pi ⊎ Ti
and s′i as the sum of the elements in P ′i . We have that, for i, i′ ∈ [n] with
i ̸= i′,

s′i =
k
∑

j=1

pi, j + (2k)2m2 + 2kmpi, j

= k(2k)2m2 + (2km+ 1)
k
∑

j=1

pi, j

= k(2k)2m2 + (2km+ 1)
k
∑

j=1

pi′, j

=
k
∑

j=1

pi, j + (2k)2m2 + 2kmpi′, j

= s′i′ .

For i, i′ ∈ [n] with i ̸= i′,
P ′i ∩ P ′i′ = (Pi ⊎ Ti)∩ (Pi′ ⊎ Ti′)

=
�

Pi ⊎
�

(2k)2m2 + 2kmpi, j

�

� j ∈ [k]
	�

∩
�

Pi′ ⊎
�

(2k)2m2 + 2kmpi′, j

�

� j ∈ [k]
	�

= (Pi ∩ Pi′)∪
��

(2k)2m2 + 2kmpi, j

�

� j ∈ [k]
	

∩
�

(2k)2m2 + 2kmpi′, j

�

� j ∈ [k]
	�

=∅.

5

ECE 374 B Homework 9 Fall 2023

Since
S′ = S ∪ T

= S ∪
�

(2k)2m2 + 2kms
�

� s ∈ S
	

=

� n
⋃

i=1

Pi

�

∪
� n
⋃

i=1

�

(2k)2m2 + 2kmpi, j

�

� j ∈ [k]
	

�

=
n
⋃

i=1

Pi ∪
�

(2k)2m2 + 2kmpi, j

�

� j ∈ [k]
	

=
n
⋃

i=1

Pi ∪ Ti

=
n
⋃

i=1

P ′i ,

we have that (P ′i)ni=1 is a 2k-partition of S′.
⇐ Suppose there is a 2k-partition (P ′i)ni=1 of S′. For all i ∈ [n], define Pi = P ′i ∩S.

For all i ∈ [n], |Pi|= k. Suppose otherwise. Then there exists i, i′ ∈ [n] with
i ̸= i′ such that |Pi| > k and |Pi′ | < k. For all i ∈ [n], s′i be the sum of the
elements of P ′i . We have that

s′i ≤ (k+ 1)m+ (k− 1)
�

(2k)2m2 + 2km2
�

= (k+ 1)m+ (k− 1)(2k)2m2 + 2(k− 1)km2

< (k+ 1)(2k)2m2 + 2k(k+ 1)m

= (k+ 1)
�

(2k)2m2 + 2km
�

≤ s′i′ ,

a contradiction that (P ′i)ni=1 is a 2k-partition of S′. For all i ∈ [n], let si and
si′ be the sum of Pi and P ′i , respectively. For i, i′ ∈ [n], we have that si = si′ .
Suppose otherwise. Then for some i, i′ ∈ [n], we have that si < si′ . But this
contradicts that s′i = s′i′ , as si′ − si ≤ km but for any x , x ′ ∈ S′ \S with x < x ′,
x ′− x ≥ 2km> km. Since for any i, i′ ∈ [n] with i ̸= i′ P ′i ∩ P ′i′ =∅, we have
that Pi ∩ Pi′ =∅. Because also

S = S′ ∩ S =

� n
⋃

i=1

P ′i

�

∩ S =
n
⋃

i=1

P ′i ∩ S =
n
⋃

i=1

Pi ,

we have that (Pi)ni=1 is a k-partition of S.
Assuming there are n elements in S, it requires time O(n) to compute m and
time O(n) to compute (2k)2m2+2kms for all s ∈ S thereafter. Thus the reduction
requires time O(n), implying it is polynomial-time. ■

6

ECE 374 B Homework 9 Fall 2023

3. A domino is a 1× 2 rectangle divided into two squares, each of which is labeled with an
integer1. In a legal arrangement of dominos, the dominos are lined up end-to-end so that
the numbers on adjacent ends match. An example of a legal arrangement of dominos is
given below:

Figure 1. A legal arrangement of dominos in which every integer between 0 and 6 appears twice.

For each of the following problems, either describe and analyze a polynomial-time
algorithm or prove that the problem is NP-complete:

(a) Given an arbitrary bag D of n dominos, is there a legal arrangement of all the dominos
in D?

Solution: We describe a polynomial-time algorithm by using graph modeling.
In particular, we reduce the given problem to the problem of determining if
there is an Eulerian walk (i.e., a walk that traverses every edge) in some graph.
Construct an undirected unweighted multigraph G(V, E) as follows:
• i ∈ V ⇐⇒ there is a domino in D with one of its squares labeled i.
• (i, j) ∈ E ⇐⇒ there is a domino in D where one of its squares is labeled i

and the other is labeled j.
In particular, if multiple dominos have the same two numbers, there will be
multiple edges between the same two vertices in G. G can be constructed by
brute force in time O(V + E). We find if there is an Eulerian walk in G in two
parts:
• We first check that the graph is connected by usingWhatever-First-Search

starting from any vertex in G. This requires time O(V + E). If the graph is
not connected, there is no such walk.

• Otherwise, compute deg(v) for all v ∈ V . In doing so, for a fixed v ∈ V ,
a self-loop on v contributes 2 to deg(v) and multiple edges between two
vertices u and v are counted separately in computing deg(u) and deg(v).
This requires time O(V + E) as it only requires scanning the adjacency list
of G once. Let Vodd = {v | deg(v) is odd}. There is an Eulerian walk in G in
this case (i.e., G is connected) if and only if |Vodd|= 0 or |Vodd|= 2.

If there is an Eulerian walk in G, return True. Otherwise, return False. In terms
of the graph G, this algorithm requires time O(V + E). Since max {V, E} ≤ 2n,
construction of G can be done by brute force in time O(n) in terms of the
dominos instance D. Thus, this algorithm requires time O(n) and is indeed
polynomial-time. ■

1These integers are usually represented by pips, exactly like dice. On a standard domino, the number of pips on
each side is between 0 and 6, although one can buy sets with up to 9 or even 12 pips on each side; we will allow
arbitrary integer labels. A standard set of dominos contains exactly one domino for each possible unordered pair of
labels; we do not assume that the inputs to our problems have this property.

7

ECE 374 B Homework 9 Fall 2023

(b) Given an arbitrary bag D of n dominos and an integer k, is there a legal arrangement
of dominos from D in which every integer between 1 and k appears exactly twice?

Solution: We prove this problem P is NP-hard by a polynomial-time reduction
from the undirected Hamiltonian cycle problem. Suppose G(V, E) is the instance
to Hamiltonian cycle. We construct a dominos instance to P as follows:
• Fix an arbitrary bijection ℓ : V → {1,2, . . . , V}. ℓ can be thought of as an

assignment of each vertex a unique arbitrary integer from 1 to V .
• Domino d with one square labeled ℓ(u) and the other labeled ℓ(v) is in

D ⇐⇒ (u, v) ∈ E.
SupposeA is an oracle for P . Input D as constructed above toA and output
the output of A as the solution to the Hamiltonian cycle with instance G.
The correctness of this reduction follows from the following claim: G has a
Hamiltonian cycle ⇐⇒ (D, V) is a positive instance to P . This is proven below:
⇒ Suppose G has aHamiltonian cycle v0, v1, . . . , vV−1, v0. Then (vi , vi+1 mod V) ∈

E for all 0≤ i ≤ V−1 by the definition of cycle as a walk. For each 1≤ i ≤ V ,
di be a domino with one of its squares labeled ℓ(vi) and its other square
labeled ℓ(vi+1 mod V). By construction, D contains di for all 0 ≤ i ≤ V − 1.
But (di)V−1

i=0 is a legal arrangement of all dominos in D in which every integer
between 1 and V appears exactly twice. Thus, (D, V) is a positive instance
to P .

⇐ Suppose (D, V) is a positive instance to P , and let A = (di)V−1
i=0 be a legal

arrangement of all dominos in D in which every integer between 1 and V
appears exactly twice. By the definition of legal arrangement, di has a label
ℓi+1 in common with di+1 for all 0≤ i ≤ V − 2; note carefully the indexing
here. Since labels ℓi for 1 ≤ i ≤ V − 1 appear exactly twice in A, we have
that A is a sequence of dominos (di)ki=0 where each di has labels ℓi and ℓi+1
for 1≤ i ≤ V − 2; again, note carefully the indexing. But dV−1 must have a
label ℓV in common with d0 that is not a label of either square in d j for any
j ∈ {0, 1, . . . , V − 1} \ {0, V − 1}; otherwise, we contradict that each integer
from 1 to V appears exactly twice in A. Observe that the inverse ℓ−1 of
ℓ is a well-defined function as ℓ is a bijection. Define vi = ℓ−1(ℓi) for all
1≤ i ≤ V and the resulting sequence of vertices C = v1, v2, . . . , vV , v1 in G.
By construction, each (vi , vi+1) is an edge in G, implying C is a closed walk.
Since ℓ−1 is also a bijection and ℓi ̸= ℓ j for i, j ∈ {1,2, . . . , V} with i ̸= j, C
does not repeat vertices in G and goes through every vertex in G exactly
once. This implies that C is a Hamiltonian cycle in G.

This reduction requires time O(V + E) as (D, V) can be constructed by brute
force in a single pass through G’s adjacency list. This verifies that the reduction
is indeed polynomial-time and thus that P is NP-hard.

We now show that P is NP. We assume that P Certifier below receives as
input a positive instance (D, k) of P as well as an sequence of distinct dominos
A = (di)k−1

i=0 in D and each di = (di,1, di,2) for 0 ≤ i ≤ k − 1 is a domino with
labels di,1 and di,2. It is defined as follows:

8

ECE 374 B Homework 9 Fall 2023

P Certifier(D, k,A):
for i← 1 to k:

labelCount[i]← 0
for i← 1 to k:

for j← 1 to 2:
if 1≤ di, j ≤ k:

labelCount[di, j]← labelCount[di, j] + 1
for i← 1 to k:

if labelCount[i] ̸= 2:
return False

for i← 0 to k− 1:
if di,2 ̸= di+1 mod k,1:

return False
return True

P Certifier is a correct certifier for P as P Certifier returns True if and
only if A is a legal arrangement of dominos in D where every integer from 1 to k
appears exactly twice. Moreover, P Certifier runs in time O(k) in terms of
the dominos instance (D, k), verifying that P Certifier is a polynomial-time
certifier of P . The existence of a polynomial-time certifier for P proves it is NP.
P being NP-hard and NP gives that P is NP-complete. ■

4. For each of the following decision problems, either sketch an algorithm or prove that the
problem is undecidable. Recall that wR denote the reversal of string w. For each problem,
the input is an encoding 〈M , w〉 of a Turing machine M and its input string w.

(a) Does M either accept w or reject wR?

Solution: Let L be the language corresponding to this problem. For the sake of
argument, suppose there is an algorithm there exist an algorithm DecideL that
decides the language L. Then we can solve the halting problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
run M on input w
return True

return DecideL(〈M ′, w〉)

9

ECE 374 B Homework 9 Fall 2023

We prove this reduction correct as follows:

=⇒ Suppose 〈M , w〉 ∈ Halt.
Then M halts on input w.
Then M ′ accepts every input string x .
In particular, M ′ accepts w.
So 〈M ′, w〉 is in L.
So DecideL accepts 〈M ′, w〉.
So DecideHalt accepts 〈M , w〉.

⇐= Suppose 〈M , w〉 /∈ Halt.
Then M does not halt on input w.
Then M ′ diverges on every input string x .
Then M ′ accepts no string and rejects no string.
In particular, M ′ does not accept w or reject w.
So 〈M ′, w〉 is not in L.
So DecideL rejects 〈M ′, w〉.
So DecideHalt rejects 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is
undecidable. We conclude that the algorithm DecideL cannot not exist. So L
must be undecidable. ■

10

ECE 374 B Homework 9 Fall 2023

(b) If we run M on input w, does M ever change a symbol on its tape?

Solution: Let L be the language corresponding to this problem and let Q be the
states of M . To decide L, we can build a Turing machine M ′ that simulates M
for |Q| (|w|+ 1) steps. If M changes a symbol within the |Q| (|w|+ 1) steps, M ′

returns True. Otherwise, M ′ returns False. M ′ decides L so L is decidable.
The reasoning for the construction of M ′ is as follows. There are only

|Q| (|w|+ 1) distinct configurations for M , because the current state and the
symbol at the current tape head location completely determine the transition, of
which there are |w|+ 1 choices. Therefore, if M does not change a symbol on
its tape within |Q| (|w|+ 1) steps, then M would never change a symbol on its
tape. ■

11

ECE 374 B Homework 9 Fall 2023

(c) If we run M on input w, does M ever reenter its start state?

Solution: Let L be the language corresponding to this problem. For the sake of
argument, suppose there is an algorithm there exist an algorithm DecideL that
decides the language L. Then we can solve the halting problem as follows:

DecideHalt(〈M , w〉):
Encode the following Turing machine M ′:

M ′(x):
leave start
run M on input w while
not reentering start

reenter start
return True

return DecideL(〈M ′, w〉)

The Turing machine M ′ encoded in DecideHalt is well-defined as we can
enforce that M ′ simulates M on w using states outside of its start state. We
prove this reduction correct as follows:

=⇒ Suppose 〈M , w〉 ∈ Halt.
Then M halts on input w.
Then M ′ reenters its start state if run on input w.
So 〈M ′, w〉 is in L.
So DecideL accepts 〈M ′, w〉.
So DecideHalt accepts 〈M , w〉.

⇐= Suppose 〈M , w〉 /∈ Halt.
Then M does not halt on input w.
Then M ′ diverges on every input string x .
Then M ′ does not reenter its start state.
So 〈M ′, w〉 is not in L.
So DecideL rejects 〈M ′, w〉.
So DecideHalt rejects 〈M , w〉.

In both cases, DecideHalt is correct. But that’s impossible, because Halt is
undecidable. We conclude that the algorithm DecideL cannot not exist. So L
must be undecidable. ■

12

