In lecture, we described an algorithm of Karatsuba that multiplies two n-digit integers using $O(n^{\lg 3})$ single-digit additions, subtractions, and multiplications. In this lab we'll look at some extensions and applications of this algorithm.

- 1. Describe an algorithm to compute the product of an n-digit number and an m-digit number, where m < n, in $O(m^{\lg 3 1}n)$ time. *Hint*: Break up the bigger number into chunks with m bits each.
- 2. Describe an algorithm to compute the decimal representation of 2^n in $O(n^{\lg 3})$ time. (The standard algorithm that computes one digit at a time requires $\Theta(n^2)$ time.)
- 3. Describe a divide-and-conquer algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(n^{\lg 3})$ time. [Hint: Let $x = a \cdot 2^{n/2} + b$. Watch out for an extra log factor in the running time.]

Other Divide and Conquer Problems:

4. Given an arbitrary array A[1..n], describe an algorithm to determine in O(n) time whether A contains more than n/4 copies of any value. Do not use hashing, or radix sort, or any other method that depends on the precise input values.

Think about later:

5. Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe an algorithm to compute the decimal representation of an arbitrary n-bit binary number in $O(M(n)\log n)$ time.