
ECE 374 B Lab 21 - NP-hardness II Fall 2023

Prove that each of the following problems is NP-hard.

1. Given an undirected graph G, does G contain a simple path that visits all but 374 vertices?

2. Given an undirected graph G, does G have a spanning tree in which every node has degree
at most 374?

3. Given an undirected graph G, does G have a spanning tree with at most 374 leaves?

4. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G a “color”
from the set {0,1, 2,3, 4}, such that for any edge uv, vertices u and v are assigned different
“colors”. A 5-coloring is careful if the colors assigned to adjacent vertices are not only
distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph
has a careful 5-coloring is NP-hard. [Hint: Reduce from the standard 5Color problem.]
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A careful 5-coloring.

�. Prove that the following problem is NP-hard: Given an undirected graph G, find any
integer k > 374 such that G has a proper coloring with k colors but G does not have a
proper coloring with k� 374 colors.

�. A bicoloring of an undirected graph assigns each vertex a set of two colors. There are two
types of bicoloring: In a weak bicoloring, the endpoints of each edge must use different
sets of colors; however, these two sets may share one color. In a strong bicoloring, the
endpoints of each edge must use distinct sets of colors; that is, they must use four colors
altogether. Every strong bicoloring is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given
graph is NP-hard.

(b) Prove that finding the minimum number of colors in a strong bicoloring of a given
graph is NP-hard.
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Left: A weak bicoloring of a 5-clique with four colors.
Right A strong bicoloring of a 5-cycle with five colors.
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5. Prove that the following problem is NP-hard: Given an undirected graph G, find any
integer k > 374 such that G has a proper coloring with k colors but G does not have a
proper coloring with k− 374 colors.
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6. To think about later: A bicoloring of an undirected graph assigns each vertex a set of two
colors. There are two types of bicoloring: In a weak bicoloring, the endpoints of each edge
must use different sets of colors; however, these two sets may share one color. In a strong
bicoloring, the endpoints of each edge must use distinct sets of colors; that is, they must
use four colors altogether. Every strong bicoloring is also a weak bicoloring.

(a) Prove that finding the minimum number of colors in a weak bicoloring of a given
graph is NP-hard.

(b) Prove that finding the minimum number of colors in a strong bicoloring of a given
graph is NP-hard.
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