Prove that the following languages are undecidable.

I. ACCEPTILLINI := { $\langle M \rangle$ | *M* accepts the string **ILLINI**}

Solution: For the sake of argument, suppose there is an algorithm DECIDEACCEPTILLINI that correctly decides the language ACCEPTILLINI. Then we can solve the halting problem as follows:

We prove this reduction correct as follows:

- $\implies \text{Suppose } M \text{ halts on input } w.$ Then M' accepts *every* input string x. In particular, M' accepts the string **ILLINI**. So DECIDEACCEPTILLINI accepts the encoding $\langle M' \rangle$. So DECIDEHALT correctly accepts the encoding $\langle M, w \rangle$.

Then M' diverges on *every* input string x.

In particular, M' does not accept the string **ILLINI**.

So DecideAcceptIllini rejects the encoding $\langle M' \rangle$.

So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DECIDEHALT is correct. But that's impossible, because HALT is undecidable. We conclude that the algorithm DECIDEACCEPTILLINI does not exist.

As usual for undecidablility proofs, this proof invokes *four* distinct Turing machines:

- The hypothetical algorithm DECIDEACCEPTILLINI.
- The new algorithm DECIDEHALT that we construct in the solution.
- The arbitrary machine *M* whose encoding is part of the input to DECIDEHALT.
- The special machine *M*['] whose encoding DECIDEHALT constructs (from the encoding of *M* and *w*) and then passes to DECIDEACCEPTILLINI.

2. AcceptThree := $\{\langle M \rangle \mid M \text{ accepts exactly three strings}\}$

Solution: For the sake of argument, suppose there is an algorithm DECIDEACCEPTTHREE that correctly decides the language ACCEPTTHREE. Then we can solve the halting problem as follows:

We prove this reduction correct as follows:

 \implies Suppose *M* halts on input *w*.

Then M' accepts exactly three strings: ε , **0**, and **1**.

So DecideAcceptThree accepts the encoding $\langle M' \rangle$.

So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.

 \iff Suppose *M* does not halt on input *w*.

Then M' diverges on *every* input string x.

In particular, M' does not accept exactly three strings (because $0 \neq 3$).

So DecideAcceptThree rejects the encoding $\langle M' \rangle$.

So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DECIDEHALT is correct. But that's impossible, because HALT is undecidable. We conclude that the algorithm DECIDEACCEPTTHREE does not exist.

3. ACCEPTPALINDROME := $\{\langle M \rangle \mid M \text{ accepts at least one palindrome}\}$

Solution: For the sake of argument, suppose there is an algorithm DECIDEACCEPTPALINDROME that correctly decides the language ACCEPTPALINDROME. Then we can solve the halting problem as follows:

We prove this reduction correct as follows:

 \implies Suppose *M* halts on input *w*.

Then M' accepts *every* input string x.

In particular, M' accepts the palindrome **RACECAR**.

So DecideAcceptPalindrome accepts the encoding $\langle M' \rangle$.

- So DecideHalt correctly accepts the encoding $\langle M, w \rangle$.
- \iff Suppose *M* does not halt on input *w*.

Then M' diverges on *every* input string x.

In particular, M' does not accept any palindromes.

So DecideAcceptPalindrome rejects the encoding $\langle M' \rangle$.

So DecideHalt correctly rejects the encoding $\langle M, w \rangle$.

In both cases, DECIDEHALT is correct. But that's impossible, because HALT is undecidable. We conclude that the algorithm DECIDEACCEPTPALINDROME does not exist.

Yes, this is *exactly* the same proof as for problem 1.