
ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

Let L be an arbitrary regular language over the alphabet Σ= {0,1}. Prove that the following
languages are also regular. (You probably won’t get to all of these.)

1. FlipOdds(L) := {flipOdds(w) | w ∈ L}, where the function flipOdds inverts every odd-
indexed bit in w. For example:

flipOdds(0000111101010101) = 1010010111111111

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a new DFA
M ′ = (Q′, s′, A′,δ′) that accepts FlipOdds(L) as follows.

To keep track of if the index is even/odd, we cross the original states Q with the
set {even,odd}. Then every time an input is processed we flip this second coordinate.
The starts state is (s,even). Effectively this is a flag determining if it is even or odd.

To flip the bits on odd indexes, we define the transition of odd indexed bits (i.e.
(q,odd)) as the transition of the original DFA with a flipped input and the even
indexed bits (i.e. (q,even)) as the transition of the original DFA with the same input.

Q′ =Q× {even,odd}
s′ = (s,even)
A′ = A× {even,odd}

δ′((q,odd),0) =
�

δ(q,1),even
�

δ′((q,even),0) =
�

δ(q,0),odd
�

δ′((q,odd),1) =
�

δ(q,0),even
�

δ′((q,even),1) =
�

δ(q,1),odd
�

Example: (Blue odd transitions, Red even transitions)

S S0 S1

Se S0e S1e

So S0o S1o

1

1

0

0

0 1

1
1

0
0

0
0

1
101

1

0

1

�

1



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

2. UnflipOdd1s(L) := {w ∈ Σ∗ | flipOdd1s(w) ∈ L}, where the function flipOdd1 inverts
every other 1 bit of its input string, starting with the first 1. For example:

flipOdd1s(0000111101010101) = 0000010100010001

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We need to construct a new
DFA/NFA M ′ = (Q′, s′, A′,δ′) that accepts UnflipOdd1s(L) as follows.

Intuition: By the definition of the language, the new DFA M ′ should have the
same corresponding states at M , given that we unflip every alternating occurrence
of 1 (i.e. 1 becomes 0). This can be done by including a flag at every state to know
whether the next incoming 1 bit is to be flipped or not.

Strategy: So, every state is represented as (q,flip) with flip ∈ { True,False },
where flip = True indicates that the next 1 bit in the input string is to be flipped. We
start with (s,True) to ensure that the first 1 bit in the string would be flipped. When
that happens, we also reset the flag to be False until the next 1 bit is read from the
string at which point of time we just switch the flag back to be True and repeat the
process. We can look at an example of this process with an arbitrary regular language
input:

Example: For M ′ to accept the string 11, we and feed the flipped string 01 to M .
DFA M :

q0start q1 q2
0

1

0
1

0, 1

δ(s,0) = q1

δ(q2,0) = q2;

q2 is the accepting state for M .

DFA M ′:

q0, Truestart q1, True q2, True

q2, Falseq0, False q1, False

0

0

1

1
1

0

0

1
1 1

0

0

2



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

δ′((q0,True),1) = (δ(q0,0),False)
= (q1,False)

δ′((q1,False),1) = (δ(q1,1),True)
= (q1,False)

The string is accepted as { q2,True } is an accepting state in M ′.

Solution: Essentially, when M ′ receives some string w as input, we flip every other
bit starting from the first bit and stimulate this transformed string on M . This would
mean that every state (q,flip) in M ′ indicates that M is in state q, with the difference
that the next 1 bit would have to be flipped only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,False),0) =
�

δ(q,0),False
�

δ′((q,True),0) =
�

δ(q,0),True
�

δ′((q,False),1) =
�

δ(q,1),True
�

δ′((q,True),1) =
�

δ(q,0),False
�

Once again, by treating 1 and 0 as synonyms for True and False, respectively, we
can rewrite δ′ more compactly as

δ′((q,flip), a) =
�

δ(q,¬flip∧ a), flip⊕ a
�

�

3



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

3. FlipOdd1s(L) := {flipOdd1s(w) | w ∈ L}, where the function flipOdd1 is defined as in the
previous problem.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We need to construct a new
NFA M ′ = (Q′, s′, A′,δ′) that accepts FlipOdd1s(L).

Intuition: M ′ receives some string flipOdd1s(w) as input, chooses which 0 bits
to restore to 1s, and simulates M on the restored string w. We would have two
cases when we see a 0 as it can either be just a 0 from the start or can be a 1 which
was flipped and we would want to restore it.So while restoring, when the flip bit is
True(flip= True) and we encounter a 0 ,we would have 2 possible states either we
flip the bit or leave it as it is.Therefore,we are going to construct a NFA.

Strategy: We need to add True,False to the states to accommodate the flip bit.M ′
would never accept two consecutive 1s (Eg:11) because FlipOdd1s will flip every
other 1 bit, so if M ′ ever sees 11, it rejects.Also,when we see a 1 and flip= True we
should kill the execution thread as it indicates that we waited too long to flip a 0 to a
1.

Example: Let M be the DFA of a language which accepts all strings containing the
substring 11 .So M will be as follows:

q0start q1 q2
1

0

0
1

0, 1

q2 is the accepting state of M.So for the string 11:

δ(q0,1) = q1

δ(q1,1) = q2

Since q2 is the accepting state of M.For M ′ the accepting states would be
{(q2,True), (q2,False)}.

4



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

q0,Truestart q1,True q2,True

q2,Falseq0,False q1,False

qs

1 1 1

0

0

0

0

0

0

1

0

1

0
0

1

The input 01 to M ′ gives the final state
�

q2, True
�

which is an accepting state of
M ′.

Solution: Each state (q,flip) of M ′ indicates that M is in state q, and we need to
flip a 0 bit before the next 1 bit if and only if flip= True.

Q′ =Q× {True,False}
s′ = (s,True)
A′ = A× {True,False}

δ′((q,False),0) =
��

δ(q,0), False
�	

δ′((q,True),0) =
��

δ(q,0), True
�

,
�

δ(q,1), False
�	

δ′((q,False),1) =
��

δ(q,1), True
�	

δ′((q,True),1) =∅

�

4. cycle(L) := {x y|x , y ∈ Σ∗, y x ∈ L}, The language that accepts the rotations of string from
a regular language.

Solution: HW problem. �

5



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

5. Prove that the language insert1(L) := {x1y | x y ∈ L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by insert-
ing exactly one 1. For example, if L = {ε,OOK!}, then insert1(L) = {1,1OOK!,O1OK!,
OO1K!,OOK1!,OOK!1}.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We need to construct an NFA
M ′ = (Q′, s′, A′,δ′) that accepts insert1(L).

Intuition: Since the string in the language is represented as x1y, where x repre-
sents all the possible prefixes of a string in L and y represents all the suffixes. We can
use two states - before and after. A state change can occur from before to after when
we see a 1. If the machine is in the before state and it reads a 1, it can choose to
either stay in the before state or move to the after state. If the machine is in the after
state and reads a 1, it will stay in the after state since it had already chosen a 1 to
ignore previously. Thus we combine the before and after states with the states of M
(Q) to form the set of states Q’ of M’.

Strategy: M ′ nondeterministically simulates M running on a string prefix, then
uses a 1 character and then runs M the rest of the input string. The transformation is
best shown in the following example:

DFA for M:

sstart a b

0

1

1

0

0,1

NFA for M’:

s, be f orestart a, be f ore b, be f ore

s, a f ter a, a f ter b, a f ter

0

1

1

0

0,1

1

1

0

1

0

1

1

0, 1

Solution: So we need to simply formalize the transformation above. First we

6



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

know we need to double the states. Σ stays the same. For the delta functions both
sets of DFAs have the same transitions but we need to add a 1 transition from the DFA
simulating the prefix to the DFA simulating the suffix.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not
yet skipped over a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
skipped over a 1.

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before), a) =

¨
�

(δ(q, a),before), (q,after)
	

if a = 1
�

(δ(q, a),before)
	

otherwise
δ′((q,after), a) =

�

(δ(q, a),after)
	

�

7



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

6. Prove that the language delete1(L) := {x y | x1y ∈ L} is regular.
Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L
by deleting exactly one 1. For example, if L = {101101,00,ε}, then delete1(L) =
{01101,10101,10110}.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA
M ′ = (Q′, s′, A′,δ′) with ε-transitions that accepts delete1(L) as follows.

Intuitively, M ′ simulates M , but inserts a single 1 into M ’s input string at a
nondeterministically chosen location.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not
yet inserted a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
inserted a 1.

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before),ε) =
�

(δ(q,1),after)
	

δ′((q,after),ε) =∅

δ′((q,before), a) =
�

(δ(q, a),before)
	

δ′((q,after), a) =
�

(δ(q, a),after)
	

�

8



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

7. Consider the following recursively defined function on strings:

stutter(w) :=

¨

ε if w= ε
aa • stutter(x) if w= ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

• stutter(PRESTO) = PPRREESSTTOO
• stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

(a) Prove that the language stutter−1(L) := {w | stutter(w) ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an DFA
M ′ = (Q′, s′, A′,δ′) that accepts stutter−1(L) as follows.

Intuitively, M ′ reads its input string w and simulates M running on stutter(w).
Each time M ′ reads a symbol, the simulation of M reads two copies of that
symbol.

Q′ =Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a) �

9



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

(b) Prove that the language stutter(L) := {stutter(w) | w ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. wWe construct an DFA
M ′ = (Q′, s′, A′,δ′) that accepts stutter(L) as follows.

M ′ reads the input string stutter(w) and simulates M running on input w.
• State (q,•) means M ′ has just read an even-indexeda symbol in stutter(w),

so M should ignore the next symbol (if any).
• For any symbol a ∈ Σ, state (q, a) means M ′ has just read an odd-indexed

symbol in stutter(w), and that symbol was a. If the next symbol is an a,
then M should transition normally; otherwise, the simulation should fail.

• The state fail means M ′ has read two successive symbols that should have
been equal but were not; the input string is not stutter(w) for any string w.

Q′ =Q× ({•} ∪Σ)∪ {fail} for some new symbol • 6∈ Σ
s′ = (s,•)
A′ = {(q,•) | q ∈ A}

δ′((q,•), a) = (q, a) for all q ∈Q and a ∈ Σ

δ′((q, a), b) =

¨

(δ(q, a),•) if a = b

fail if a 6= b
for all q ∈Q and a, b ∈ Σ

δ′(fail, a) = fail for all a ∈ Σ �
aThe first symbol in the input string has index 1; the second symbol has index 2, and so on.

10



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

Solution (via regular expressions): Let R be an arbitrary regular expression.
We recursively construct a regular expression stutter(R) as follows:

stutter(R) :=



























∅ if R=∅
stutter(w) if R= w for some string w ∈ Σ∗

stutter(A) + stutter(B) if R= A+ B for some regexen A and B

stutter(A) • stutter(B) if R= A• B for some regexen A and B

(stutter(A))∗ if R= A∗ for some regex A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for
arbitrary languages A and B:
• stutter(A∪ B) = stutter(A)∪ stutter(B)
• stutter(A• B) = stutter(A) • stutter(B)
• stutter(A∗) = (stutter(A))∗

These identities can all be proved by inductive definition-chasing, after which the
claim L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of
the induction proofs as an exercise for a future semester an exam the reader.

Equivalently, we can directly transform R into stutter(R) by replacing every
explicit string w ∈ Σ∗ inside R with stutter(w) (with additional parentheses if
necessary). For example:

stutter
�

(1+ ε)(01)∗(0+ ε) +0∗
�

= (11+ ε)(0011)∗(00+ ε) + (00)∗

Although this may look simpler, actually proving that it works requires the same
induction arguments. �

11



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

8. Consider the following recursively defined function on strings:

evens(w) :=











ε if w= ε
ε if w= a for some symbol a

b · evens(x) if w= abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

• evens(EXPELLIARMUS) = XELAMS

• evens(AVADA�KEDAVRA) = VD�EAR.

Once again, let L be an arbitrary regular language.

(a) Prove that the language evens−1(L) := {w | evens(w) ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct a DFA
M ′ = (Q′, s′, A′,δ′) that accepts evens−1(L) as follows:

Q′ =Q× {0, 1}
s′ = (s, 0)

A′ = A× {0,1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).
• State (q, 0)means M ′ has just read an even symbol in w, so M should ignore

the next symbol (if any).
• State (q, 1) means M ′ has just read an odd symbol in w, so M should read

the next symbol (if any).
�

12



ECE 374 B Lab 3 - Language Transformation - Solutions Fall 2023

(b) Prove that the language evens(L) := {evens(w) | w ∈ L} is regular.

Solution: Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA
M ′ = (Q′, s′, A′,δ′) that accepts evens(L) as follows.

Intuitively, M ′ reads the input string evens(w) and simulates M running on
string w, while nondeterministically guessing the missing symbols in w.
• When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and

simulates M reading ba from w.
• When M ′ finishes evens(w), it guesses whether w has even or odd length,

and in the odd case, it guesses the last symbol in w.

Q′ =Q

s′ = s

A′ = A∪
�

q ∈Q
�

� δ(q, a)∩ A 6=∅ for some a ∈ Σ
	

δ′(q, a) =
⋃

b∈Σ

�

δ
�

δ(q, b), a
�	

�

13


