Prove that each of the following languages is *not* regular.

1. $\{\mathbf{0}^{2n}\mathbf{1}^n \mid n \geq 0\}$

```
Solution (verbose): Let F be the language \mathbf{0}^*.

Let x and y be arbitrary strings in F.

Then x = \mathbf{0}^i and y = \mathbf{0}^j for some non-negative integers i \neq j.

Let z = \mathbf{0}^i \mathbf{1}^i.

Then xz = \mathbf{0}^{2i} \mathbf{1}^i \in L.

And yz = \mathbf{0}^{i+j} \mathbf{1}^i \notin L, because i + j \neq 2i.

Thus, F is a fooling set for L.

Because F is infinite, E cannot be regular.
```

Solution (concise): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{0}^i \mathbf{1}^i$, because $\mathbf{0}^{2i} \mathbf{1}^i \in L$ but $\mathbf{0}^{i+j} \mathbf{1}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set for L.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language $(\mathbf{00})^*$ is an infinite fooling set for L.

2. $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$

Solution (verbose): Let F be the language $\mathbf{0}^*$.

Let x and y be arbitrary strings in F.

Then $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some non-negative integers $i \neq j$.

Let $z = \mathbf{0}^i \mathbf{1}^i$.

Then $xz = \mathbf{0}^{2i} \mathbf{1}^i \notin L$.

And $yz = \mathbf{0}^{i+j} \mathbf{1}^i \in L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \notin L$ but $\mathbf{0}^{2j}\mathbf{1}^i \in L$. Thus, the language $(\mathbf{0}\mathbf{0})^*$ is an infinite fooling set for L.

3. $\{\mathbf{0}^{2^n} \mid n \ge 0\}$

Solution (verbose): Let $F = L = \{ \mathbf{0}^{2^n} \mid n \ge 0 \}$.

Let x and y be arbitrary elements of F.

Then $x = \mathbf{0}^{2^i}$ and $y = \mathbf{0}^{2^j}$ for some non-negative integers x and y.

Let $z = \mathbf{0}^{2^i}$.

Then $xz = \mathbf{0}^{2^i} \mathbf{0}^{2^i} = \mathbf{0}^{2^{i+1}} \in L$.

And $yz = \mathbf{0}^{2^j} \mathbf{0}^{2^i} = \mathbf{0}^{2^i+2^j} \notin L$, because $i \neq j$

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^{2^i}$ and $\mathbf{0}^{2^j}$ are distinguished by the suffix $\mathbf{0}^{2^i}$, because $\mathbf{0}^{2^i}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+1}} \in L$ but $\mathbf{0}^{2^j}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+2^j}} \notin L$. Thus L itself is an infinite fooling set for L.

4. Strings over {0, 1} where the number of 0s is exactly twice the number of 1s.

Solution (verbose): Let F be the language $\mathbf{0}^*$.

Let x and y be arbitrary strings in F.

Then $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some non-negative integers $i \neq j$.

Let $z = \mathbf{0}^i \mathbf{1}^i$.

Then $xz = \mathbf{0}^{2i} \mathbf{1}^i \in L$.

And $yz = \mathbf{0}^{i+j} \mathbf{1}^i \notin L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language $(\mathbf{0}\mathbf{0})^*$ is an infinite fooling set for L.

Solution (closure properties): If *L* were regular, then the language

$$L \cap \mathbf{0}^* \mathbf{1}^* = \left\{ \mathbf{0}^{2n} \mathbf{1}^n \mid n \ge 0 \right\}$$

would also be regular since regular languages are closed under intersection but we have seen in Problem 1 that $\left\{\mathbf{0}^{2n}\mathbf{1}^n \mid n \geq 0\right\}$ is not regular.

Another solution based on closure properties. If *L* were regular, then the language

$$((\mathbf{0} + \mathbf{1})^* \setminus L) \cap \mathbf{0}^* \mathbf{1}^* = \{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{\mathbf{0}^m\mathbf{1}^n\mid m\neq 2n\}$ is not regular in problem 2. [Yes, this proof would be worth full credit, either in homework or on an exam.]

Note that the proofs based on closure properties relied on non-regularity of some previously known languages. One could also think of the proofs as allowing you to simplify the initial language to a more structured one which may be easier to work with.

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]) {} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

```
Solution (verbose): Let F be the language (*.

Let x and y be arbitrary strings in F.

Then x = (^i \text{ and } y = (^j \text{ for some non-negative integers } i \neq j.

Let z = )^i.

Then xz = (^i)^i \in L.

And yz = (^j)^i \notin L, because i \neq j.

Thus, F is a fooling set for L.

Because F is infinite, E cannot be regular.
```

Solution (concise): For any non-negative integers $i \neq j$, the strings (i and (j are distinguished by the suffix) i , because (i) $^i \in L$ but (i) $^j \notin L$. Thus, the language (* is an infinite fooling set.

Solution (closure properties): If L were regular, then the language $L \cap (^*)^* = \{(^n)^n \mid n \geq 0\}$ would be regular. The language $\{(^n)^n \mid n \geq 0\}$ is the same as $\{0^n 1^n \mid n \geq 0\}$ modulo changing the symbol names and is not regular from lecture. Thus L is not regular.

6. w, such that $|w| = \lceil k\sqrt{k} \rceil$, for some natural number k.

Hint: since this one is more difficult, we'll even give you a fooling set that works: try $F = \{0^{m^6} | m \ge 1\}$. We'll also provide a bound that can help: the difference between consecutive strings in the language, $\lceil (k+1)^{1.5} \rceil - \lceil k^{1.5} \rceil$, is bounded above and below as follows

$$1.5\sqrt{k} - 1 \le \lceil (k+1)^{1.5} \rceil - \lceil k^{1.5} \rceil \le 1.5\sqrt{k} + 3$$

All that's left is you need to carefully prove that F is a fooling set for L.

Solution: HW Problem.

7. Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \ge 2$, where each substring w_i is a string in $\{\mathbf{0}, \mathbf{1}\}^*$, and some pair of substrings w_i and w_j are equal.

```
Solution (verbose): Let F be the language \mathbf{0}^*.

Let x and y be arbitrary strings in F.

Then x = \mathbf{0}^i and y = \mathbf{0}^j for some non-negative integers i \neq j.

Let z = \mathbf{\#0}^i.

Then xz = \mathbf{0}^i \mathbf{\#0}^i \in L.

And yz = \mathbf{0}^j \mathbf{\#0}^i \notin L, because i \neq j.

Thus, F is a fooling set for L.

Because F is infinite, F cannot be regular.
```

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{#0}^i$, because $\mathbf{0}^i \mathbf{#0}^i \in L$ but $\mathbf{0}^j \mathbf{#0}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set.

Work on these later:

7.
$$\{\mathbf{0}^{n^2} \mid n \ge 0\}$$

Solution: Let x and y be distinct arbitrary strings in L.

Without loss of generality, $x = \mathbf{0}^{2i+1}$ and $y = \mathbf{0}^{2j+1}$ for some $i > j \ge 0$.

Let $z = \mathbf{0}^{i^2}$.

Then $xz = \mathbf{0}^{i^2 + 2i + 1} = \mathbf{0}^{(i+1)^2} \in L$

On the other hand, $yz = \mathbf{0}^{i^2+2j+1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that L is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in $\mathbf{0}^*$.

Without loss of generality, $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some $i > j \ge 0$.

Let $z = \mathbf{0}^{i^2 + i + 1}$.

Then $xz = \mathbf{0}^{i^2 + 2i + 1} = \mathbf{0}^{(i+1)^2} \in L$.

On the other hand, $yz = \mathbf{0}^{i^2+i+j+1} \notin L$, because $i^2 < i^2+i+j+1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that 0^* is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in 0000^* .

Without loss of generality, $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some $i > j \ge 3$.

Let $z = 0^{i^2 - i}$.

Then $xz = \mathbf{0}^{i^2} \in L$.

On the other hand, $yz = \mathbf{0}^{i^2 - i + j} \notin L$, because

$$(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2$$
.

(The first inequalities requires $i \ge 2$, and the second $j \ge 1$.)

Thus, z distinguishes x and y.

We conclude that 0000^* is an infinite fooling set for L, so L cannot be regular.

8. $\{w \in (\mathbf{0} + \mathbf{1})^* \mid w \text{ is the binary representation of a perfect square}\}$

Solution: We design our fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = \mathbf{10}^{k-2} \mathbf{10}^k \mathbf{1} \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = \mathbf{1}(\mathbf{00})^*\mathbf{1}$, and let x and y be arbitrary strings in F.

Then $x = \mathbf{10}^{2i-2}\mathbf{1}$ and $y = \mathbf{10}^{2j-2}\mathbf{1}$, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let
$$z = 0^{2i} 1$$
.

Then $xz = \mathbf{10}^{2i-2}\mathbf{10}^{2i}\mathbf{1}$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = \mathbf{10}^{2j-2}\mathbf{10}^{2i}\mathbf{1}$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

$$< 2^{2i+2j} + 2^{2i+1} + 1$$

$$< 2^{2(i+j)} + 2^{i+j+1} + 1$$

$$= (2^{i+j} + 1)^2.$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.