Recall fooling sets and distinguishability. Two strings \(x, y \in \Sigma^* \) are suffix distinguishable with respect to a given language \(L \) if there is a string \(z \) such that exactly one of \(xz \) and \(yz \) is in \(L \). This means that any DFA that accepts \(L \) must necessarily take \(x \) and \(y \) to different states from its start state. A set of strings \(F \) is a fooling set for \(L \) if any pair of strings \(x, y \in F, x \neq y \) are distinguishable. This means that any DFA for \(L \) requires at least \(|F| \) states. To prove non-regularity of a language \(L \), you need to find an infinite fooling set \(F \) for \(L \). Given a language \(L \), try to find a constant size fooling set first and then prove that one of size \(n \) exists for any given \(n \) which is basically the same as finding an infinite fooling set.

Note that another method to prove non-regularity is via reductions. Suppose you want to prove that \(L \) is non-regular. You can do regularity preserving operations on \(L \) to obtain a language \(L' \) which you already know is non-regular. Then \(L \) must not have been regular. For instance if \(\overline{L} \) is not regular then \(L \) is also not regular. You will see an example in Problem 4 below.

Prove that each of the following languages is not regular.

1. \(\{\theta^{2n}1^n \mid n \geq 0\} \)

2. \(\{\theta^m1^n \mid m \neq 2n\} \)

3. \(\{\theta^n \mid n \geq 0\} \)

4. Strings over \(\{\theta, 1\} \) where the number of \(\theta \)s is exactly twice the number of 1s.

 - Describe an infinite fooling set for the language.
 - Use closure properties. What is language if you intersect the given language with \(\theta^*1^* \)?

5. Strings of properly nested parentheses \(() \), brackets \([] \), and braces \(\{ \} \). For example, the string \(([])\} \) is in this language, but the string \(([]\}) \) is not, because the left and right delimiters don’t match.

 - Describe an infinite fooling set for the language.
 - Use closure properties.

6. \(w \), such that \(|w| = \lceil k\sqrt{k} \rceil \), for some natural number \(k \).

 Hint: since this one is more difficult, we’ll even give you a fooling set that works: try \(F = \{\theta^m \mid m \geq 1\} \). We’ll also provide a bound that can help: the difference between consecutive strings in the language, \(\lceil (k + 1)^{1.5} \rceil - \lceil k^{1.5} \rceil \), is bounded above and below as follows:

 \[
 1.5\sqrt{k} - 1 \leq \lceil (k + 1)^{1.5} \rceil - \lceil k^{1.5} \rceil \leq 1.5\sqrt{k} + 3
 \]

 All that’s left is you need to carefully prove that \(F \) is a fooling set for \(L \).

7. Strings of the form \(w_1#w_2#\cdots#w_n \) for some \(n \geq 2 \), where each substring \(w_i \) is a string in \(\{\theta, 1\}^* \), and some pair of substrings \(w_i \) and \(w_j \) are equal.
Work on these later:

7. \(\{ \mathbf{0}^n^2 \mid n \geq 0 \} \)

8. \(\{ w \in (0 + 1)^n \mid w \text{ is the binary representation of a perfect square} \} \)