The algorithms portion of the course will require you to evaluate mathematical expressions. Recursive algorithms have a natural synergy with recurrence relations and hence for this course, you will be expected to solve simple recurrence relations.

1. $T(n)=2 T(n-1)+c n$
2. $T(n)=2 T\left(\frac{n}{2}\right)+c n$
3. $T(n)=2 T\left(\frac{n}{4}\right)+c n$

Recurrence relations are a fascinating and area od discrete mathematics. Feel free to explore more advanced equations and solving techniques! ${ }^{1}$

Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster using binary search related ideas.

1. Suppose we are given an array $A[1 . . n]$ of n distinct integers, which could be positive, negative, or zero, sorted in increasing order so that $A[1]<A[2]<\cdots<A[n]$.
(a) Describe a fast algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists.
(b) Formulate a recurrence relation that describes your algorithm.
(c) Suppose we know in advance that $A[1]>0$. Describe an even faster algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists. [Hint: This is really easy.]
2. Suppose we are given an array $A[1 . . n]$ of n integers, which could be positive, negative, or zero, sorted in increasing order so that $A[1] \leq A[2] \leq \cdots \leq A[n]$. Suppose we wanted to count the number of times some integer value x occurs in A. Describe an algorithm (as fast as possible) which returns the number of elements containing value x.
3. Suppose we are given an array $A[1 . . n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are exactly six local minima in the following array:

Describe and analyze a fast algorithm that returns the index of one local minimum. For example, given the array above, your algorithm could return the integer 9, because A [9] is a local minimum. [Hint: With the given boundary conditions, any array must contain at least one local minimum. Why?]
4. Suppose you are given two sorted arrays $A[1 . . n]$ and $B[1 . . n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$. For example, given the input

$$
A[1 . .8]=[0,1,6,9,12,13,18,20] \quad B[1 . .8]=[2,4,5,8,17,19,21,23]
$$

[^0]your algorithm should return the integer 9. [Hint: What can you learn by comparing one element of A with one element of B ?]

To think about later:

4. Now suppose you are given two sorted arrays $A[1 . . m]$ and $B[1 . . n]$ and an integer k. Describe a fast algorithm to find the k th smallest element in the union $A \cup B$. For example, given the input

$$
A[1 . .8]=[0,1,6,9,12,13,18,20] \quad B[1 . .5]=[2,5,7,17,19] \quad k=6
$$

your algorithm should return the integer 7 .
5. Suppose you have an algorithm that given as input a directed graph $G=(V, E)$, nodes $s, t \in V$, and an integer k, outputs whether the number of distinct shortest paths from s to t is at least k. Describe an algorithm that counts the number of distinct shortest s-t paths in G. Does your algorithm run in polynomial time?

[^0]: ${ }^{1}$ http://discrete.openmathbooks.org/dmoi2/sec_recurrence.html

