

ECE-374-B: Lecture 0 - Logistics and
Strings/Languages

Lecturer: Nickvash Kani
August 22, 2023

University of Illinois at Urbana-Champaign

0

Course Administration

Instructional Staff

• Instructor:
• Nickvash Kani
• Abhishek Umrawal

• Teaching Assistants:

• Sung Woo Jeon
• Sindhu Vydana
• Sandhya Perumenki
• Sumedh Vemuganti

• Weiyang Wang
• Jack Chen
• Yueyi Shen
• Haoyuan You

• Office hours: TBD, See course webpage
• Contacting us: Use private notes on Piazza to reach course
staff. Direct email only for sensitive or confidential
information.

1

430

Section A vs B

This semester, the two sections will be run completely
independently.

• Different lectures.
• Different homeworks, quizzes, exams.
• Different grading policies.

Section B will be in-person only. Recordings will be attempted
but not guaranteed.

2

Section A vs B

This semester, the two sections will be run completely
independently.

• Different lectures.
• Different homeworks, quizzes, exams.
• Different grading policies.

Section B will be in-person only. Recordings will be attempted
but not guaranteed.

2

Online resources

• Webpage: General information, announcements,
homeworks, quizzes, course policies
https://ecealgo.com

• Submission(Gradescope): Written homework submission
and grading, regrade requests. Exams wil be uploaded
there as well.

• Communication(Piazza): Announcements, online questions
and discussion, contacting course staff (via private notes)

• Gradebook (Canvas): Announcements, online questions
and discussion, contacting course staff (via private notes)

See course webpage for links

Important: check Piazza/course web page at least once each
day 3

https://ecealgo.com

Discussion Sessions/Labs

• 50min problem solving session led by TAs
• Two times a week
• Go to your assigned discussion section
• Bring pen and paper!

Discussion sections will have questions that appear on the
homework. If, you skip, you’re just making more work for
yourself later.

4

Discussion Sessions/Labs

• 50min problem solving session led by TAs
• Two times a week
• Go to your assigned discussion section
• Bring pen and paper!

Discussion sections will have questions that appear on the
homework. If, you skip, you’re just making more work for
yourself later.

4

Any questions

Again all policy information should be on course website:
https://ecealgo.com

Any questions?

5

https://ecealgo.com

Over-arching course questions

High-Level Questions

This course introduces three distinct fields of computer
science research:

• Computational complexity.
• Given infinite time and a certain machine, is it possible to
solve a given problem.

• Algorithms
• Given a deterministic Turing machine, how fast can we
solve certain problems.

• Limits of computation.
• Are there tasks that our computers cannot do and how do
we identify these problems?

6

in

Why not just focus on Algorithms?

When someone asks you, ”How fast can you compute problem
X”, they are actually asking:

• Is X solvable using the deterministic Turing machines we
have at our disposal?

• If it is solvable, can we find the solution efficiently (in
poly-time)?

• If it is solvable but we don’t have a poly time solution,
what problem(s) is it most similar too?

7

Course Structure

Course divided into three parts:

• Basic automata theory: finite
state machines, regular
languages, hint of context free
languages/grammars, Turing
Machines

• Algorithms and algorithm design
techniques

• Undecidability and
NP-Completeness, reductions to
prove intractability of problems

8

Goals

• Algorithmic thinking
• Learn/remember some basic tricks, algorithms, problems,
ideas

• Understand/appreciate limits of computation
(intractability)

• Appreciate the importance of algorithms in computer
science and beyond (engineering, mathematics, natural
sciences, social sciences, ...)

9

Formal languages and complexity
(The Blue Weeks!)

Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

10

Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

10

Multiplying Numbers

Consider the following problem:

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x
and adding the partial products.

3141
⇥2718
25128
3141

21987
6282
8537238 11

will sum
OCT 2m

I OCD

Time analysis of grade school multiplication

• Each partial product: ⇥(n) time
• Number of partial products:  n
• Adding partial products: n additions each ⇥(n) (Why?)
• Total time: ⇥(n2)
• Is there a faster way?

12

Fast Multiplication

• O(n1.58) time [Karatsuba 1960] disproving Kolmogorov’s
belief that ⌦(n2) is best possible

• O(n log n log log n) [Schonhage-Strassen 1971].
Conjecture: O(n log n) time possible

• O(n log n · 2O(log⇤ n)) time [Furer 2008]
• O(n log n) [Harvey-van der Hoeven 2019]

Can we achieve O(n)? No lower bound beyond trivial one!

13

Equivalent Complexity

Does this mean multiplication is as complex as another
problem that has a O(n log n) algorithm like sorting/QuickSort?

How do we compare? The two problems have:

• Different inputs (two numbers vs n-element array)

• Different outputs (a number vs n-element array)

• Different entropy characteristics (from a information
theory perspective)

14

Equivalent Complexity

Does this mean multiplication is as complex as another
problem that has a O(n log n) algorithm like sorting/QuickSort?
How do we compare? The two problems have:

• Different inputs (two numbers vs n-element array)

• Different outputs (a number vs n-element array)

• Different entropy characteristics (from a information
theory perspective)

14

Languages, Problems and Algorithms ... oh my! II

An algorithm has a runtime complexity.

P

co-NPNP

PSPACE

EXPSPACE
NP-Hard

NPC

15

Languages, Problems and Algorithms ... oh my! III

A problem has a complexity class!

regular

Recognized by:

context free

context sensitive

recursively enumerable

DFAs, NFAs, RegEx
Push-down automata

Linear bounded automata

Turing machines

Problems do not have run-time since a problem 6= the
algorithm used to solve it. Complexity classes are defined
differently.
How do we compare problems? What if we just want to know if
a problem is ”computable”.

16

Algorithms, Problems and Languages ... oh my! I

Definition
1. An algorithm is a step-by-step way to solve a problem.
2. A problem is some question that we’d like answered given
some input. It should be a decision problem of the form
”Does a given input fulfill property X.”

3. A Language is a set of strings. Given a alphabet, ⌃ a
language is a subset of ⌃⇤

A language is a formal
realization of this problem. For problem X, the
corresponding language is:

L = {w | w is the encoding of an input y to problem X and
the answer to input y for a problem X is ”YES” }
A decision problem X is ”YES” is the string is in the
language.

17

Algorithms, Problems and Languages ... oh my! I

Definition
1. An algorithm is a step-by-step way to solve a problem.
2. A problem is some question that we’d like answered given
some input. It should be a decision problem of the form
”Does a given input fulfill property X.”

3. A Language is a set of strings. Given a alphabet, ⌃ a
language is a subset of ⌃⇤ A language is a formal
realization of this problem. For problem X, the
corresponding language is:

L = {w | w is the encoding of an input y to problem X and
the answer to input y for a problem X is ”YES” }
A decision problem X is ”YES” is the string is in the
language. 17

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma
and output is separated by |.

Machine accepts a x*y=z if ”x*y|z” is in L. Rejects otherwise.

LMULT2 =

8
>>>><

>>>>:

1⇥ 1|1, 1⇥ 2|2, 1⇥ 3|3, . . .
2⇥ 1|2, 2⇥ 2|4, 2⇥ 3|6, . . .

...
n⇥ 1|n, n⇥ 2|2n, n⇥ 3|3n, . . .

9
>>>>=

>>>>;

(1)

18

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma
and output is separated by |.

Machine accepts a x*y=z if ”x*y|z” is in L. Rejects otherwise.

LMULT2 =

8
>>>><

>>>>:

1⇥ 1|1, 1⇥ 2|2, 1⇥ 3|3, . . .
2⇥ 1|2, 2⇥ 2|4, 2⇥ 3|6, . . .

...
n⇥ 1|n, n⇥ 2|2n, n⇥ 3|3n, . . .

9
>>>>=

>>>>;

(1)

18

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma
and output is separated by |.

Machine accepts a [i1, i2, . . .] = sort({i1, i2, . . .}) if ”x[]|z[]” is in L.
Rejects otherwise.

LSort2 =

8
>>>><

>>>>:

1, 1|1, 1 1, 2|1, 2 1, 3|1, 3, . . .
2, 1|1, 2, 2, 2|2, 2, 2, 3|2, 3, . . .

...
n, 1|1,n, n, 2|2,n, n, 3|3,n, . . .

9
>>>>=

>>>>;

(2)

If the same type of machine can recognize both languages,
then that gives us an upperbound top their hardness.

19

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma
and output is separated by |.

Machine accepts a [i1, i2, . . .] = sort({i1, i2, . . .}) if ”x[]|z[]” is in L.
Rejects otherwise.

LSort2 =

8
>>>><

>>>>:

1, 1|1, 1 1, 2|1, 2 1, 3|1, 3, . . .
2, 1|1, 2, 2, 2|2, 2, 2, 3|2, 3, . . .

...
n, 1|1,n, n, 2|2,n, n, 3|3,n, . . .

9
>>>>=

>>>>;

(2)

If the same type of machine can recognize both languages,
then that gives us an upperbound top their hardness.

19

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma
and output is separated by |.

Machine accepts a [i1, i2, . . .] = sort({i1, i2, . . .}) if ”x[]|z[]” is in L.
Rejects otherwise.

LSort2 =

8
>>>><

>>>>:

1, 1|1, 1 1, 2|1, 2 1, 3|1, 3, . . .
2, 1|1, 2, 2, 2|2, 2, 2, 3|2, 3, . . .

...
n, 1|1,n, n, 2|2,n, n, 3|3,n, . . .

9
>>>>=

>>>>;

(2)

If the same type of machine can recognize both languages,
then that gives us an upperbound top their hardness.

19

How do we formulate languages?

Strings

Alphabet

An alphabet is a finite set of symbols.

Examples of alphabets:

• ⌃ = {0, 1},

• ⌃ = {a,b, c, . . . , z},

• ASCII.

• UTF8.

• ⌃ =

{h(w)forwardi, h(a)strafe lefti, h(s)backi, h(d)strafe righti}

20

String Definition

Definition
1. A string/word over ⌃ is a finite sequence of symbols over

⌃. For example, ‘0101001’, ‘string’, ‘hmovebackihrotate90i’
2. x · y ⌘ xy is the concatenation of two strings
3. The length of a string w (denoted by |w|) is the number of
symbols in w. For example, |101| = 3, |✏| = 0

4. For integer n � 0, ⌃n is set of all strings over ⌃ of length n.
⌃⇤ is the set of all strings over ⌃.

5. ⌃⇤ set of all strings of all lengths including empty string.

Question: {000,0 10}⇤ =

21

E E E E E
29353

q
1 00 01 10 11 0100 001 019

Emptiness

• ✏ is a string containing no symbols. It is not a set
• {✏} is a set containing one string: the empty string. It is a
set, not a string.

• ; is the empty set. It contains no strings.

Question: What is {;}

22

1
1 I

a

I 1 1

0 0

Concatenation and properties

• If x and y are strings then xy denotes their concatenation.
• Concatenation defined recursively :

• xy = y if x = ✏

• xy = a(wy) if x = aw

• xy sometimes written as x·y.
• concatenation is associative: (uv)w = u(vw) hence write
uvw ⌘ (uv)w = u(vw)

• not commutative: uv not necessarily equal to vu
• The identity element is the empty string ✏:

✏u = u✏ = u.

23

Substrings, prefixes, Suffixes

Definition
v is substring of w () there exist strings x, y such that
w = xvy.

• If x = ✏ then v is a prefix of w
• If y = ✏ then v is a suffix of w

24

way
W xU

Subsequence

A subsequence of a string w[1...n] is either a subsequence of
w[2...n] or w[1] followed by a subsequence of w[2...n].

Example
EE37 is a subsequence of ECE374B

Question: How many sub-sequences are there in a string
|w| = 6?

25

Subsequence

A subsequence of a string w[1...n] is either a subsequence of
w[2...n] or w[1] followed by a subsequence of w[2...n].

Example
EE37 is a subsequence of ECE374B

Question: How many sub-sequences are there in a string
|w| = 6?

25

26 a aaaaa

or

Ya

String exponent

Definition
If w is a string then wn is defined inductively as follows:
wn = ✏ if n = 0
wn = wwn�1 if n > 0

Question: (ha)3 =.

26

W W W

hahaha

Rapid-fire questions -strings

Answer the following questions taking ⌃ = {0, 1}.

1. What is ⌃0?

2. How many elements are there in ⌃n?

3. If |u| = 2 and |v| = 3 then what is |u·v|?
4. Let u be an arbitrary string in ⌃⇤. What is ✏u? What is u✏?

27

2

5

u

Languages Gio101 11,000
E all the strigs

where we 1

a

Languages

Definition
A language L is a set of strings over ⌃. In other words L ✓ ⌃⇤.

Standard set operations apply to languages.

• For languages A,B the concatenation of A,B is
AB = {xy | x 2 A, y 2 B}.

• For languages A,B, their union is A [B, intersection is
A \ B, and difference is A \ B (also written as A� B).

• For language A ✓ ⌃⇤ the complement of A is Ā = ⌃⇤ \ A.

28

got it

Languages

Definition
A language L is a set of strings over ⌃. In other words L ✓ ⌃⇤.

Standard set operations apply to languages.

• For languages A,B the concatenation of A,B is
AB = {xy | x 2 A, y 2 B}.

• For languages A,B, their union is A [B, intersection is
A \ B, and difference is A \ B (also written as A� B).

• For language A ✓ ⌃⇤ the complement of A is Ā = ⌃⇤ \ A.

28

Set Concatenation

Definition
Given two sets X and Y of strings (over some common alphabet
⌃) the concatenation of X and Y is

XY = {xy | x 2 X, y 2 Y} (3)

Question: X = {ECE, CS, }, Y = {340, 374} =)
XY = .

29

a

QE
374 CS 374

ECE 340 CS 340

⌃⇤ and languages

Definition
1. ⌃n is the set of all strings of length n. Defined inductively:

⌃n = {✏} if n = 0
⌃n = ⌃⌃n�1 if n > 0

2. ⌃⇤ = [n�0⌃n is the set of all finite length strings
3. ⌃+ = [n�1⌃n is the set of non-empty strings.

Definition
A language L is a set of strings over ⌃. In other words L ✓ ⌃⇤.

Question: Does ⌃⇤ have strings of infinite length?

30

E 932 938

f o
E 393

EE E v E 0 u en 000

Rapid-Fire questions - Languages

Problem
Consider languages over ⌃ = {0, 1}.

1. What is ;0?
2. If |L| = 2, then what is |L4|?
3. What is ;⇤, {✏}⇤?
4. For what L is L⇤ finite?
5. What is ;+?
6. What is {✏}+?

31

Terminology Review

Let’s review what we learned.

• A character(a,b, c, x) is a unit of information represented
by a symbol: (letters, digits, whitespace)

• A alphabet(⌃) is a set of characters
• A string(w) is a sequence of characters
• A language(A,B, C, L) is a set of strings

• A grammar(G) is a set of rules that defines the strings that
belong to a language

32

Terminology Review

Let’s review what we learned.

• A character(a,b, c, x) is a unit of information represented
by a symbol: (letters, digits, whitespace)

• A alphabet(⌃) is a set of characters
• A string(w) is a sequence of characters
• A language(A,B, C, L) is a set of strings
• A grammar(G) is a set of rules that defines the strings that
belong to a language

32

Languages: easiest, easy, hard, really hard, reallyn hard

regular
context free

context sensitive

recursively enumerable

• Regular languages.
• Regular expressions.
• DFA: Deterministic finite automata.
• NFA: Non-deterministic finite automata.
• Languages that are not regular.

• Context free languages (stack).
• Turing machines: Decidable languages.
• TM Undecidable/unrecognizable languages (halting
theorem).

33

Languages: easiest, easy, hard, really hard, reallyn hard

regular
context free

context sensitive

recursively enumerable

• Regular languages.
• Regular expressions. Next lecture
• DFA: Deterministic finite automata.
• NFA: Non-deterministic finite automata.
• Languages that are not regular.

• Context free languages (stack).
• Turing machines: Decidable languages.
• TM Undecidable/unrecognizable languages (halting
theorem).

33

That’s it for now

Check the course website (https://ecealgo.com) for lab
and hw schedule.

34

https://ecealgo.com

