ECE-374-B: Lecture 0 - Logistics and Strings/Languages

Lecturer: Nickvash Kani

August 26, 2025

University of Illinois at Urbana-Champaign

Course Administration

Course Policies

See website

Discussion Sessions/Labs

- 50min problem solving session led by TAs
- Two times a week
- Go to your assigned discussion section
- Bring pen and paper!

No Homeworks ... but there is a catch

- I have lost faith in homeworks being an effective tool for study in the modern age.
- There will be series of short 5 minute quizzes at the beginning of each discussion section.
- Quizzes will gauge mastery of material and serve as a commitment device to study lectures/labs.
- Each quiz is worth 2 points, there are 25 points in your final grade and 20 quizzes during the semester. Seven out of the 20 quizzes can be dropped/failed and still get full credit!
- Quizzes are designed to be easy if you engaged with the lecture and lab material (Quiz 0 will literally be a problem from Lab 0).

Any questions

Again all policy information should be on course website:

https://ecealgo.com/

Any questions?

Over-arching course questions

High-Level Questions

This course introduces three distinct fields of computer science research:

- Computational complexity.
 - Given infinite time and a certain machine, is it possible to solve a given problem.
- Algorithms
 - · Given a deterministic Turing machine, how fast can we solve certain problems.
- · Limits of computation.
 - Are there tasks that our computers cannot do and how do we identify these problems?

Why not just focus on Algorithms?

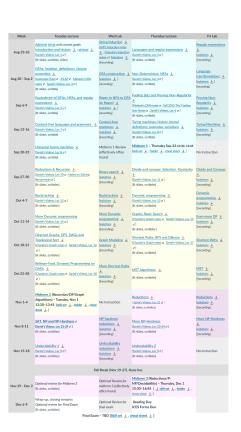
When someone asks you, "How fast can you compute problem X", they are actually asking:

- Is X solvable using the deterministic Turing machines we have at our disposal?
- If it is solvable, can we find the solution efficiently (in poly-time)?
- If it is solvable but we don't have a poly time solution, what problem(s) is it most similar too?

Course Structure

Course divided into three parts:

- Basic automata theory: finite state
 machines, regular languages, hint of context
 free languages/grammars, Turing Machines
- Algorithms and algorithm design techniques
- Undecidability and NP-Completeness, reductions to prove intractability of problems



Goals

- Algorithmic thinking
- Learn/remember some basic tricks, algorithms, problems, ideas
- Understand/appreciate limits of computation (intractability)
- Appreciate the importance of algorithms in computer science and beyond (engineering, mathematics, natural sciences, social sciences, ...)

(The Blue Weeks!)

Formal languages and complexity

Why Languages?

First 5 weeks devoted to language theory.

Why Languages?

First 5 weeks devoted to language theory.

But why study languages?

Multiplying Numbers

Consider the following problem:

Problem Given two *n*-digit numbers *x* and *y*, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of y with x and adding the partial products.

Time analysis of grade school multiplication

- Each partial product: $\Theta(n)$ time
- Number of partial products: $\leq n$
- Adding partial products: n additions each $\Theta(n)$ (Why?)
- Total time: $\Theta(n^2)$
- Is there a faster way?

Fast Multiplication

- $O(n^{1.58})$ time [Karatsuba 1960] disproving Kolmogorov's belief that $\Omega(n^2)$ is best possible
- $O(n \log n \log \log n)$ [Schonhage-Strassen 1971]. **Conjecture:** $O(n \log n)$ time possible
- $O(n \log n \cdot 2^{O(\log^* n)})$ time [Furer 2008]
- $O(n \log n)$ [Harvey-van der Hoeven 2019]

Can we achieve O(n)? No lower bound beyond trivial one!

Equivalent Complexity

Does this mean multiplication is as complex as another problem that has a $O(n \log n)$ algorithm like sorting/QuickSort?

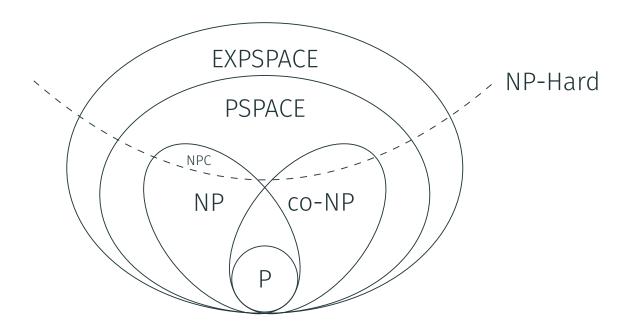
Equivalent Complexity

Does this mean multiplication is as complex as another problem that has a $O(n \log n)$ algorithm like sorting/QuickSort? How do we compare? The two problems have:

- Different inputs (two numbers vs n-element array)
- Different outputs (a number vs n-element array)
- Different entropy characteristics (from a information theory perspective)

Languages, Problems and Algorithms ... oh my!

An algorithm has a runtime complexity.



Languages, Problems and Algorithms ... oh my!

A problem has a complexity class! Recognized by: recursively enumerable → Turing machines Linear bounded automata context sensitive Push-down automata context free regular DFAs, NFAs, RegEx

Problems do not have run-time since a problem \neq the algorithm used to solve it. Complexity classes are defined differently.

How do we compare problems? What if we just want to know if a problem is "computable".

Algorithms, Problems and Languages ... oh my! I

Definition

- 1. An algorithm is a step-by-step way to solve a problem.
- 2. A problem is some question that we'd like answered given some input. It should be a decision problem of the form "Does a given input fulfill property X."
- 3. A Language is a set of strings. Given a alphabet, Σ a language is a subset of Σ^*

Algorithms, Problems and Languages ... oh my! I

Definition

- 1. An algorithm is a step-by-step way to solve a problem.
- 2. A problem is some question that we'd like answered given some input. It should be a decision problem of the form "Does a given input fulfill property X."
- 3. A Language is a set of strings. Given a alphabet, Σ a language is a subset of Σ^* A language is a formal realization of this problem. For problem X, the corresponding language is:

L = {w | w is the encoding of an input y to problem X and the answer to input y for a problem X is "YES" }

A decision problem X is "YES" is the string is in the language.

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma and output is separated by |.

Machine accepts a $x^*y=z$ if " $x^*y|z$ " is in L. Rejects otherwise.

Problem
What:: xxy > 2

Decicion Problem

Is x y = 2

No

Sorting Oeeision

Is the sorted version

of A = B >> Yes

>> N

Language of multiplication

How do we define the multiplication problem as a language?

Define L as language where inputs are separated by comma and output is separated by |.

Machine accepts a $x^*y=z$ if " $x^*y|z$ " is in L. Rejects otherwise.

$$L_{MULT2} = \begin{cases} 1 \times 1 | 1, & 1 \times 2 | 2, & 1 \times 3 | 3, \dots \\ 2 \times 1 | 2, & 2 \times 2 | 4, & 2 \times 3 | 6, \dots \\ \vdots & \vdots & \vdots \\ n \times 1 | n, & n \times 2 | 2n, & n \times 3 | 3n, \dots \end{cases}$$
 (1)

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma and output is separated by |.

Machine accepts a $[i_1, i_2, \ldots] = sort(\{i_1, i_2, \ldots\})$ if "x[]|z[]" is in L. Rejects otherwise.

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma and output is separated by |.

Machine accepts a $[i_1, i_2, \ldots] = sort(\{i_1, i_2, \ldots\})$ if "x[]|z[]" is in L. Rejects otherwise.

$$L_{Sort2} = \begin{cases} 1, 1 | 1, 1 & 1, 2 | 1, 2 & 1, 3 | 1, 3, \dots \\ 2, 1 | 1, 2, & 2, 2 | 2, 2, & 2, 3 | 2, 3, \dots \\ \vdots & \vdots & \vdots & \vdots \\ n, 1 | 1, n, & n, 2 | 2, n, & n, 3 | 3, n, \dots \end{cases}$$

$$(2)$$

Language of sorting

We do the same thing for sorting.

Define L as language where inputs are separated by comma and output is separated by |.

Machine accepts a $[i_1, i_2, \ldots] = sort(\{i_1, i_2, \ldots\})$ if "x[]|z[]" is in L. Rejects otherwise.

$$L_{Sort2} = \begin{cases} 1, 1 | 1, 1 & 1, 2 | 1, 2 & 1, 3 | 1, 3, \dots \\ 2, 1 | 1, 2, & 2, 2 | 2, 2, & 2, 3 | 2, 3, \dots \\ \vdots & \vdots & \vdots & \vdots \\ n, 1 | 1, n & n, 2 | 2, n, & n, 3 | 3, n, \dots \end{cases}$$

$$(2)$$

If the same type of machine can recognize both languages, then that gives us an upperbound top their hardness.

How do we formulate languages?

Strings

Alphabet

An alphabet is a finite set of symbols.

Examples of alphabets:

$$\cdot \Sigma = \{0, 1\},$$

•
$$\Sigma = \{a, b, c, \ldots, z\}$$
,

- ASCII.
- · UTF8.
- $\Sigma = \{\langle (w) \text{forward} \rangle, \langle (a) \text{strafe left} \rangle, \langle (s) \text{back} \rangle, \langle (d) \text{strafe right} \rangle \}$

String Definition

Definition

- 1. A string/word over Σ is a finite sequence of symbols over Σ . For example, '0101001', 'string', ' $\langle \text{moveback} \rangle \langle \text{rotate} 90 \rangle$ '
- 2. $x \cdot y \equiv xy$ is the concatenation of two strings
- 3. The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101|=3, $|\epsilon|=0$
- 4. For integer $n \geq 0$, Σ^n is set of all strings over Σ of length n. Σ^* is the set of all strings over Σ .
- 5. Σ^* set of all strings of all lengths including empty string.

Question:
$$\{'0','1'\}^* = \{0,1\} \{0,1$$

Emptiness

- ϵ is a string containing no symbols. It is not a set
- $\{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
 - \emptyset is the empty set. It contains no strings.

Question: What is
$$\{\emptyset\}\}=1$$

So that contains the empty solution $\{\emptyset\}=0$

Concatenation and properties

- If x and y are strings then xy denotes their concatenation.
- Concatenation defined recursively:
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is associative: (uv)w = u(vw) hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu
- The identity element is the empty string ϵ :

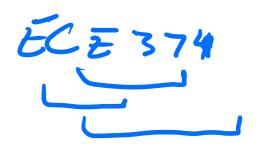
$$\epsilon U = U \epsilon = U$$
.

Substrings, prefixes, Suffixes

Definition

v is substring of $w \iff$ there exist strings x, y such that w = xvy.

- If $x = \epsilon$ then v is a prefix of w
- If $y = \epsilon$ then v is a suffix of w



Subsequence

A subsequence of a string w[1...n] is either a subsequence of w[2...n] or w[1] followed by a subsequence of w[2...n].

Example

EE37 is a subsequence of ECE374B

Subsequence

A subsequence of a string w[1...n] is either a subsequence of w[2...n] or w[1] followed by a subsequence of w[2...n].

Example

EE37 is a subsequence of ECE374B

Question: How many sub-sequences are there in a string |w| = 6?

String exponent

Definition

If w is a string then w^n is defined inductively as follows:

$$w^n = \epsilon \text{ if } n = 0$$

 $w^n = ww^{n-1} \text{ if } n > 0$

Question: $(ha)^3 = .$ halo ha

Rapid-fire questions -strings

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^n ?
- 3. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 4. Let *u* be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?

Languages

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\bar{A} = \Sigma^* \setminus A$.

Set Concatenation

Definition

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\} \tag{3}$$

Question:
$$X = \{ECE, CS, \}, Y = \{340, 374\} \implies XY = .$$

Σ^* and languages

Definition

1. Σ^n is the set of all strings of length n. Defined inductively:

$$\Sigma^n = {\epsilon}$$
 if $n = 0$
 $\Sigma^n = \Sigma \Sigma^{n-1}$ if $n > 0$

- 2. $\Sigma^* = \bigcup_{n>0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n>1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Question: Does Σ^* have strings of infinite length?

Rapid-Fire questions - Languages

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- 1. What is \emptyset^0 ?
- 2. If |L| = 2, then what is $|L^4|$?
- 3. What is \emptyset^* , $\{\epsilon\}^*$?
- 4. For what L is L* finite?
- 5. What is \emptyset ⁺?
- 6. What is $\{\epsilon\}^+$?

Terminology Review

Let's review what we learned.

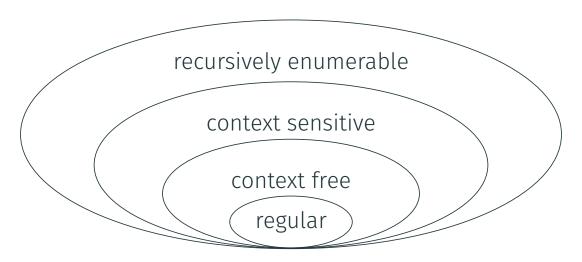
- A character(a, b, c, x) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A $alphabet(\Sigma)$ is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

Terminology Review

Let's review what we learned.

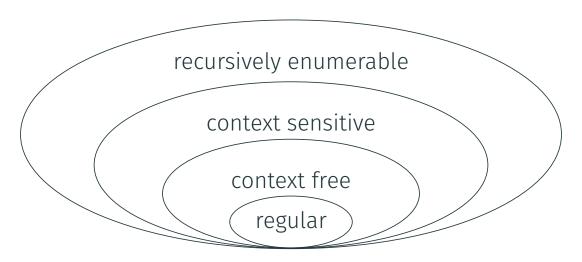
- A character(a, b, c, x) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A $alphabet(\Sigma)$ is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings
- A grammar(G) is a set of rules that defines the strings that belong to a language

Languages: easiest, easy, hard, really hard, reallyⁿ hard



- · Regular languages.
 - · Regular expressions.
 - DFA: Deterministic finite automata.
 - NFA: Non-deterministic finite automata.
- Context free languages (stack).
- · Turing machines: Decidable languages.
- TM Undecidable/unrecognizable languages (halting theorem).

Languages: easiest, easy, hard, really hard, reallyⁿ hard



- · Regular languages.
 - Regular expressions. ← Next lecture
 - DFA: Deterministic finite automata.
 - NFA: Non-deterministic finite automata.
- Context free languages (stack).
- Turing machines: Decidable languages.
- TM Undecidable/unrecognizable languages (halting theorem).

That's it for now

Check the course website (https://ecealgo.com/) for course schedule(s).

OH will begin Thursday.