Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma=\{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani
August 24, 2023
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma=\{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma=\{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

$$
L_{A N D_{N}}=\left\{\begin{array}{cccc}
0 \mid 0, & 1 \mid 1, & & \tag{1}\\
0 \cdot 0 \mid 0, & 0 \cdot 1 \mid 0, & 1 \cdot 0 \mid 0, & 1 \cdot 1 \mid 1 \\
\vdots & \vdots & \vdots & \vdots \\
(0 \cdot)^{n} \mid 0, & (0 \cdot)^{n-1} 1 \mid 0, & \cdots & (1 \cdot)^{n} \mid 1 \ldots
\end{array}\right\}
$$

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma=\{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

$$
L_{A N D_{N}}=\left\{\begin{array}{cccc}
0 \mid 0, & 1 \mid 1, & & \tag{1}\\
0 \cdot 0 \mid 0, & 0 \cdot 1 \mid 0, & 1 \cdot 0 \mid 0, & 1 \cdot 1 \mid 1 \\
\vdots & \vdots & \vdots & \vdots \\
(0 \cdot)^{n} \mid 0, & (0 \cdot)^{n-1} 1 \mid 0, & \cdots & (1 \cdot)^{n} \mid 1 \ldots
\end{array}\right\}
$$

This is an example of a regular language which well be discussing today.

Chomsky Hierarchy

non recursively enumerable (undecidable)

Chomsky Hierarchy

non recursively enumerable (undecidable)

Regular Languages

Regular Languages

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- Concatenation
- Repetition
a finite number of times.

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- \emptyset is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Regular Languages

Inductive step:

We can build up languages using a few basic operations:

- If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
- If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
- If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The .* operator name is Kleene star.

- If L is regular, then so is $\bar{L}=\Sigma^{*} \backslash L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma
 If w is a string then $L=\{w\}$ is regular.

Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?
Lemma
Every finite language L is regular.
Examples: $L=\{a, a b a a b, a b a\} . L=\{w| | w \mid \leq 100\}$. Why?

Regular Languages

Have basic operations to build regular languages.
Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_{1}, L_{2}, \ldots, be regular languages over alphabet Σ. Then the language $\cup_{i=1}^{\infty} L_{i}$ is not necessarily regular.

Regular Languages

Have basic operations to build regular languages.
Important: Any language generated by a finite sequence of such operations is regular.

Lemma
Let L_{1}, L_{2}, \ldots, be regular languages over alphabet Σ. Then the language $\cup_{i=1}^{\infty} L_{i}$ is not necessarily regular.

Note:Kleene star (repetition) is a single operation!

Regular Languages - Example

Example: The language $L_{01}=0^{i} 1^{j} \mid$ for all $i, j \geq 0$ is regular:

Rapid-fire questions - regular languages

1. $L_{1}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{1} is regular. T / F ?

Rapid-fire questions - regular languages

$$
\begin{aligned}
& \text { 1. } L_{1}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\} \text {. The language } L_{1} \text { is regular. } T / F \text { ? } \\
& \text { 2. } L_{2}=\left\{0^{17 i} \mid i=0,1, \ldots, \infty\right\} \text {. The language } L_{2} \text { is regular. } \\
& T / F \text { ? }
\end{aligned}
$$

Rapid-fire questions - regular languages

1. $L_{1}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{1} is regular. T / F ?
2. $L_{2}=\left\{0^{17 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular.

T/F?
3. $L_{3}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , or 5$\} . L_{3}$ is regular. T / F ?

Rapid-fire questions - regular languages

1. $L_{1}=\left\{0^{i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{1} is regular. T / F ?
2. $L_{2}=\left\{0^{17 i} \mid i=0,1, \ldots, \infty\right\}$. The language L_{2} is regular. T/F?
3. $L_{3}=\left\{0^{i} \mid i\right.$ is divisible by 2,3 , or 5$\}$. L_{3} is regular. T / F ?
4. $L_{4}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most $\left.21 s\right\} . L_{4}$ is regular. T / F ?

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star names after him ${ }^{1}$.

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:
Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_{1} and r_{2} are regular expressions denoting languages R_{1} and R_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} \cdot r_{2}\right)=r_{1} \cdot r_{2}=\left(r_{1} r_{2}\right)$ denotes the language $R_{1} R_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages
\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $a \in \Sigma$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$r_{1}+r_{2}$ denotes $R_{1} \cup R_{2}$
$r_{1} \cdot r_{2}$ denotes $R_{1} R_{2}$
r^{*} denote R^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denotes same language $\{0,1\}$

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denotes same language $\{0,1\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denotes same language $\{0,1\}$
- Two regular expressions r_{1} and r_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*_{,} \cdot,+$.

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denotes same language $\{0,1\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: $*, \cdot,+$.

Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$

- Omit parenthesis by associativity of each operation.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denotes same language $\{0,1\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if

$$
L\left(r_{1}\right)=L\left(r_{2}\right) .
$$

- Omit parenthesis by adopting precedence order: $*, \cdot,+$. Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each operation.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(\mathbf{r})=R$ then $L\left(\mathrm{r}^{+}\right)=R^{+}$.

Notation and Parenthesis

- For a regular expression $r, L(r)$ is the language denoted by r. Multiple regular expressions can denote the same language!
Example: $(0+1)$ and $(1+0)$ denotes same language $\{0,1\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if

$$
L\left(r_{1}\right)=L\left(r_{2}\right) .
$$

- Omit parenthesis by adopting precedence order: $*_{,} \cdot,+$. Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each operation.

Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.

- Superscript + . For convenience, define $r^{+}=r r^{*}$. Hence if $L(\mathbf{r})=R$ then $L\left(\mathrm{r}^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \cdot s$.

Some examples of regular expressions

Creating regular expressions

1. All strings that end in 1011?

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11 ?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

Interpreting regular expressions

1. $(0+1)^{*}$:

Interpreting regular expressions

1. $(0+1)^{*}$:
2. $(0+1)^{*} 001(0+1)^{*}$:

Interpreting regular expressions

1. $(0+1)^{*}$:
2. $(0+1)^{*} 001(0+1)^{*}$:
3. $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$:

Interpreting regular expressions

1. $(0+1)^{*}$:
2. $(0+1) * 001(0+1)^{*}$:
3. $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$:
4. $(\epsilon+1)(01)^{*}(\epsilon+0)$:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n -digits long with an input alphabet $\Sigma_{i}=\{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$
L_{A N D_{N}}=\left\{\begin{array}{cccc}
0 \cdot \mid 0, & 1 \cdot \mid 1, & & \\
0 \cdot 0 \cdot \mid 0, & 0 \cdot 1 \cdot \mid 0, & 1 \cdot 0 \cdot \mid 0, & 1 \cdot 1 \cdot \mid 1 \\
\vdots & \vdots & \vdots & \vdots \\
(0 \cdot)^{n} \mid 0, & (0 \cdot)^{n-1} 1 \mid 0, & \cdots & (1 \cdot)^{n} \mid 1 \ldots
\end{array}\right\}
$$

Formulate the regular expression which describes the above language:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_{i}=\{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$
L_{A N D_{N}}=\left\{\begin{array}{cccc}
0 \cdot \mid 0, & 1 \cdot \mid 1, & & \\
0 \cdot 0 \cdot \mid 0, & 0 \cdot 1 \cdot \mid 0, & 1 \cdot 0 \cdot \mid 0, & 1 \cdot 1 \cdot \mid 1 \\
\vdots & \vdots & \vdots & \vdots \\
(0 \cdot)^{n} \mid 0, & (0 \cdot)^{n-1} 1 \mid 0, & \cdots & (1 \cdot)^{n} \mid 1 \ldots
\end{array}\right\}
$$

Formulate the regular expression which describes the above language: $\Sigma=\left\{0,1, \cdot{ }^{\prime}\right.$, ' \mid ' $\}$
all output 1 instances
$r_{A N D_{N}}=\underbrace{(" 0 \cdot "+" 1 \cdot ")^{* " 0} \cdot "(" 0 \cdot "+" \eta \cdot ")^{* " \mid} 0^{\prime \prime}}_{\text {all output } 0 \text { instances }}+$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

The regular expression is

$$
\begin{aligned}
& (00+11)^{*}(01+10) \\
& \quad\left(00+11+(01+10)(00+11)^{*}(01+10)\right)^{*}
\end{aligned}
$$

Bit strings with odd number of 0s and 1s

The regular expression is

$$
\begin{aligned}
& (00+11)^{*}(01+10) \\
& \quad\left(00+11+(01+10)(00+11)^{*}(01+10)\right)^{*}
\end{aligned}
$$

(Solved using techniques to be presented in the following lectures...)

