Consider the problem of a n-input \underline{AND} function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical \underline{AND} of all the elements of x.

Formulate a **language** that describes the above problem.

1

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani

August 24, 2023

University of Illinois at Urbana-Champaign

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a **language** that describes the above problem.

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
 (1)

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x.

Formulate a language that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
 (1)

This is an example of a regular language which we'll be discussing today.

Chomsky Hierarchy

Chomsky Hierarchy

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- Concatenation
- · Repetition

a finite number of times.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- \emptyset is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The ·* operator name is <u>Kleene star</u>.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Some simple regular languages

```
Lemma If w is a string then L = \{w\} is regular.
```

Example: {aba} or {abbabbab}. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\cup_{i=1}^{\infty} L_i$ is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Note:Kleene star (repetition) is a single operation!

Regular Languages - Example

Example: The language $L_{01} = 0^{j}1^{j}|$ for all $i, j \ge 0$ is regular:

1.
$$L_1 = \{0^i \mid i = 0, 1, \dots, \infty\}$$
. The language L_1 is regular. T/F?

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_3 is regular. T/F?

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_3 is regular. T/F?
- 4. $L_4 = \{w \in \{0,1\}^* \mid w \text{ has at most 2 1s}\}$. L_4 is regular. T/F?

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - · compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him ¹.

Inductive Definition

A regular expression ${\bf r}$ over an alphabet ${\bf \Sigma}$ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages	Regular Expressions
\emptyset regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are R^* is regular if R is	\emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ \mathbf{a} denote $\{a\}$ $\mathbf{r_1} + \mathbf{r_2}$ denotes $R_1 \cup R_2$ $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes R_1R_2 $\mathbf{r^*}$ denote R^*
9	

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

 For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

• Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

expressions

Some examples of regular

1. All strings that end in 1011?

- 1. All strings that end in 1011?
- 2. All strings except 11?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

1.
$$(0+1)^*$$
:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:
- 4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language: $\Sigma = \{0, 1, \cdot \cdot', \cdot'\}$

$$r_{AND_N} = \underbrace{\left(\text{"0·"} + \text{"1·"}\right)^* \text{"0·"} \left(\text{"0·"} + \text{"1·"}\right)^* \text{"|0"}}_{\text{all output 0 instances}} + \underbrace{\left(\text{"1·"}\right)^* \text{"|1"}}_{\text{all output 1}}$$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

(Solved using techniques to be presented in the following lectures...)